A SYNOPSIS OF THE RECENT AND TERTIARY FRESHWATER MOLLUSCA OF THE CALIFORNIAN PROVINCE, BASED UPON AN ONTOGENETIC CLASSIFICATION.

By Harold Manpibal.

Read 8th March, 1912.
PLATES V-VIII. ${ }^{1}$

GENERAL REMARKS.

The Califorinian Province.

The region covered in the following pages has been termed by Woodward, Tryon, Fischer, and Cooke the Californian Province. Briefly it embraces the Yukon Basin and tundras to the northward, the entire Pacific drainage of North America from Western Alaska south to the vicinity of San Sebastian Viscaino Bay, Baja California, the Great Basin, and the drainage of the Colorado River. This rast area, considered as a whole a well-defined fannal unit, may be conveniently divided into twelve systems, ${ }^{2}$ or fammles, which correspond roughly to the principal drainage areas, viz.: Yukon, basin of the Yukon River and associated streams flowing into the Arctic Ocean, and tundras to the northward; Alaska, the Alaska Peninsula, Aleutian Islands, and coastal drainage south to the Stikine River; Fraser, the Fraser basin, and rivers northward to the Portland Canal, Vanconser and Queen Charlotte Islands, the Puget Sound Region, and the streams flowing north and west from the Olympic Peuinsula; Columbia, entire basin of the Columbia liver, and coastal streams from Gray's Harbour to the Umpqua River; Utah, basin of the extinct Lake lhonneville; Colorado, the Colorado River and its tributaries above the Needles or thereabonts; Nevada, the drainless basin of old Lake Lahontan; Illamath, coastal streams from the Rogue to the Redwood River, the Klamath drainage, adjacent desert basins of Eastern Oregon, and streams flowing south from Mount Shasta and westward from the Sierra Nevada Mountains, north of Yosemite Valley; Coast Range, the Sacremento - San Joaquin Valley, southern Sierra Nevada Momntains, coastal drainage from Mad River to Point Conception, and San Francisco Bay region; Mojare, the drainless basins of Owens Valley, Death Valley, Mojare Desert, and the adjacent desert regions of Southern Nevada and South-Eastern California; Los Angeles, coastal drainage from Point Conception to the vicinity of San Sebastian Viseaino Bay; Arizona, the Colorado Desert and dranage of the Colorado River below the Needles.

[^0]
Composition of the Fauna.

The Californian fauna, a summary of which is given in the accompanying tables, is a composite one and can only be understood through the Tertiary palæontological history of the region, which may be summarized as follows : -

1. Older Eocene: conditions West Indian, great interior lakes, fauna similar to that of contemporaneous deposits in Rocky Mountains, not closely related to any existing American faunas. (Payette, Truckee.)
2. Younger Eocene, Oligocene: climate continuing nearly tropical and moist, widespread estuary conditions along coast; fama similar in aspect to preceding, marked, however, by an invasion of Unioids belonging to recent European genera. ('Tejon, John Day.)
3. Miocene: conditions similar to those of Mexico, arid period, a few minor lacustrine deposits interbedded with volcanie ejectamenta, fuma consisting of Gulf States or Mexican genera, a few widespread living species first appear. (Mascall, Rosamond, Contra Costa.)
4. Pliocene: introduction of sub-boreal conditions, slightly colder than present, period of extensive lakes; peculiar portion of existing Califormin fauna appears abruptly in nearly its present form, widespread recent molluses few. howerer; half or more of species living; Pyrgulopsis represented by sereral peculiar species. (Kettleman, Santa Clara, Cache, Ildaho.)
5. Quaternary, Recent: existing conditions, temporary periods of widespread lakes; faumas oceupied present or approximately present distribution south of limits of glacial ice-sheet. North of lat. 50° the fama contains no peculiar forms except in portions of Alaska which were unglaciated, merely more hardy and readily distributed speeies which have immigrated from unglaciated areas since the middle Quaternary. Most of the species which range beyond the limits of the Californian Prorince first appear at this time. (Lahontan, Bonneville, Le Conte, Yukon loess, various fluvial and spring deposits, species washed into marine terraces along coast.)

The living fauna is made up of four elements: (1) Peculiar species, most of which have come down from the Pliocene (Pompholyx effusa, Ambloxus pliciferus). (2) Species common to central Europe and the less Arctic portions of Califomian Province which appear to have lived on from a late Miocene migration across Bering Straits (Margaritana metrgaritifera (Palæaretic origin), Anodonta cygnea (Californian origin). (3) Species common to Alaska and adjacent portions of Siberia, apparently remnants of a Quaternary migration across Bering Straits (Anodonta cygnea Beringeriuna, probably Californian origin). (4)Species of European or American origin which have immigrated from the eastward at varions periods, chiefly during pre-Bonneville-Lahontan times. The European species in the American Province probably date back to a middle Miocene migration (Physa hypnorum (European origin?), Planorbis antrosus (American origin)). On the other hand, several species of Californian origin have extended their ranges sonthward or eastward beyond the limits of the Californian Province (Margaritana margaritifera fulcata, Lymnca solida Cubensis).

Classification employed.

Since Evolution came to be accepted as a doctrine it has been a general policy to regard mere systematic work as a thing entirely apart from the theoretical considerations of species formation. Hence, in the bulk of zoological writings to-day a treatment of one involves no co-ordination with the other, to the mutual handicap of each. The first writer to break through these trammels of convention was Alpheus Hyatt, and to him the modern classification of the Mollusca is due. In the attempts to place this Phylum upon a stable footing an ever-increasing number of students have laboured, important anong whom stand Jackson, Smith, and Grabau. Diverse as were the views on species-change which these several writers held at the onset, in recording the evolutionary modifications as they exist and applying them in their systematic studies, all have arrived at essentially identical conclusions, and the genetic classification ${ }^{1}$ has ceased to be the unsupported theories of a philosopher-scientist and become a fact. To quote Hyatt's Law of Morphogenesis: "A natural classification may be made br means of a system of analrsis, in which the individual is the unit of comparison, because its life in all its phases, morphological and physiological, healthy or pathological, embryo, larva, adolescent, adult, and old (ontogeny) correlates with the morphological and physiological history of the group to which it belongs (phylogeny)."

Sintonla.

Various writers, including Cooke ${ }^{2}$ and Dall, ${ }^{3}$ have noted the occurrence, in the shells of freshwater molluses from brackish or enclosed bodies of water subject to concentration, of malleations, plications, or scalarity among the Gastropods, arcuity and roughening among the Pelecypods, and other deriations from the trpes found under normal circumstances. These examples have been invariably extreme instances, however; the less striking ones pass unnoticed, since hardly a lake, pond, marsh, slough, stagnant stream, semiestuary, or enclosed or partially enclosed body of water, contains molluses which are not more or less subject to these aberrancies. Frequently, particularly in the arid regions of Western North America, these forms have been redescribed as separate species, ${ }^{*}$ but in no instance are the characters inherited, though the stock may have passed through a long line of abnormal generations. The progeny under such conditions appear to be unusually liable to become abnormal likewise, but this may be explained on the basis of hereditary

[^1]susceptibility, much as tuberculosis passes from one generation to another in the human race.

Forms produced under these circumstances are legion, but appear in every instance not as possessing new characters, but the result of an accentuation of the principal environmental and evolntionary inflnences which affect the mollusc, hence the term syntonia suggested to the writer be Dr. David Starr Jordan.

The thickness of the shell normally depends, within limits, on the amount of lime in the water. Affected by these influences the variation increases, resulting in such extreme forms as typical Lymnea auricularia on the one hand and the so-called Mighelsi on the other. Lymuœa palustris commonly ranges from 20 to 30 mm . in altitude, depending chiefly on the rapidity of flow of the water. Syntonic forms have been noted 50 mm . in altitude. Ordinarily Physa fontinalis varies from about 60° to 70° in the breadth of the apical angle according as it is found respectively in running streams or lakes. ${ }^{1}$ In aberrant forms the breadth may be increased to 95°.

An accentuation of the evolutionary influences in the Gastropoda may produce an exaggeration of the rest periods, resulting in the development of more or less regular costre, of the spiral striæ causing malleations, angulations, or keeling, of the inflation of the aperture (to which cause is due the remarkable typical form of Lymnea auricularia, a particularly susceptible species, of which the so-called peregra and catascopium represent the normal condition), an unnatural development of the columnar fold as frequently happens in species belonging to typical Lymnaa, and the production of irregularities of growth such as are common in Planorbis trivolvis. ' The Pelecypoda appear to be rather less susceptible, but arcuity among the Unioids is generally due to this cause.

No two species of Mollusca are affected to a like degree or exactly in the same manner. Lymnaa, Physa, and Anodonta, for instance, become progressively deformed, and senile individuals show the effects most markedly. On the other hand, in Ambloxus it is almost impossible to obtain normal adolescent specimens of certain species, whereas the adults are but rarely aberrant.

The cause of these phenomena has been the source of much discussion. Dall held volcanic dust responsible among the Galapagos Bulimuli, and the salts concentrated in the receding waters of Lake Bonnerille in the instance of the Quaternary freshwater species of Utah. Cooke suggested brackish water to account for the deformation of the Lymnæas from the Aral Sea. No one, howerer, has isolated the particular salt which it is evident is producing the mischief. The only salts which occur widespread or in sufficient abundance to be regarded as probabilities are those of sodium, potassium, calcium, and magnesium. Sodium and potassium salts, known commonly as white and black alkali respectively, are frequently abundant in the arid regions of the west. It has been repeatedly observed that one or the other or both may be present in

[^2]such abundance as to coser entirely the ground in the vicinity of a pond or stagnant stream while the Mollusca are indifferently normal or affected, and when affected seldom to the degree one would expect if the distortion could be the result of the salt in question. Calcium salts, as is well known, have no deleterious effect upon molluscan life, but are a prime necessity for its existence. Magnesium compounds, on the other hand, produce remarkable physiological effects and act as poisons.

Reasoning on this basis the writer has undertaken a series of experiments with balanced aquaria which prore beyond doubt that the small quantities of magnesium salts ordinarily present in stagnant water produce these puzzling forms, and, once produced, their results are not readily overcome. Both the sulphate and the chloride appear to be equally pernicious. ${ }^{1}$

Whether or not other salts hare similar effects has not been ascertained in every case. The eight or nine commoner ones in ordinary water produce no appreciable distortion.

SYNOPSIS OF SPECIES.

Having considered briefly the faunal subdivisions, origin aud development of the fauna, method of classification, and the interfering factor, syntonia, it is now possible to proceed intelligently with an outline of the classification and distribution of the aquatic Nollusea of the Californian Province. It may be noted at the outset that the following pages are intended chicfly as a working nucleus for future papers. A monograph of the fama would require as many years for its preparation as this synopsis has months, to say nothing of the necessity of far more extensive field-work, hence its deficiencies may be to a degree pardonable.

PELECYPODA.

Superfamily UNIONOIDEA (Swainson), 1840.

The ancestral form of the Kaiad shell seems to have been heary, quadrate-discoidal, zigzag sculptured, and possessing a broad, coarse hinge. From this type there has been a general tendeney for the more specialized forms to acquire a smooth, thin, posteriorly elongated shell, the markings being carried back to the umbones forming the characteristic beak sculpture and towards a reduction in the breadth of the hinge, followed by a loss first of the lateral tecth, later the pseudo-cardinals, with the ultimate result of a general simplification of all the shell parts.

This paterina stage is not represented withont some modification by any living species known to the writer. Probably the nearest approach is in such types as Myria corrugata, Quadrula undulata, and Rotundaria tuberculata, in which the sculpture has been largely carried back to the umbones, a few ataristic, undulating, or broken pustulose

[^3]ridges remaining, particularly on the posterior portion of the shell, while the broad hinge and the sub-quadrate shape seem to hare suffered little change. ${ }^{1}$

In the next stage, of which Migranaja littoralis, Elliptio crassidens, and Lampsilis luteolus may be takeu as representatives, the sculpturing has been carried back to the umbones, the shells become posteriorly elongated and the hinge-area much reduced in breadth. Forms such as Margaritana margaritifera falcata, Stropitus edentulus, and Alasmidonta marginata represent the next condition, in which the laterals have become obsolete, learing the pseudo-cardinals as tubercles, while in typical Anodonta the shell has become elongate-elliptical, the umbones decidedly anterior, and the hinge simple, edentate, and gently curred.

This series of changes is not eharacteristic of any one group of Naiades, but may be obsersed with more or less modifications in all, irrespective of the special line of descent. In other worls the entire superfamily exhibits an instance of parallel development, and the dissimilarities of the species as one sees them are due to the different stages in the series reached by that species and the degree of unequal parallelism developed by that particular line of descent compared with the whole. Since speeialization withont differentiation is not very valuable in classification, the shell eharacters become of secondary importance in the recognition of groups more comprehensive than genera.

In the anatomp, howerer, one finds a sound foundation on which the higher divisions may be built. Here the specialization which takes place tends to ultimately result in the production of a parasitic larva (unlike any stage in the development of the race) which must pass through a complete metamorphosis before reaching the adolescent condition, and a specialized marsupium for its development. This reaches its culmination only in such genera as Spatha, Anodonta, and Proptera, but all the higher forms show indications of approaching it. It is evident that parallelism likewise exists in the anatomical modifications, in that all the groups modify towards a certain definite end, yet the means br which this is accomplished are diverse, and the resulting marsupia and larve are not homologous but strictly analogous.

Margaritana (Margaritaninx) represents in its anatomical features, independent of the modifications of the shell, the oldest and least differentiated trpe of Naiad structure. The gill-septa, which in the more specialized groups (except the Hyriinæ) coalesce completely to form the water-tubes, are present on the inner faces of each gilllamella. These are never united, but instead regularly beaded with low-rounded papillæ lying in rows at right angles to the septa. At oceasional and irregular intervals, perhaps once to a septum, its development becomes more pronounced, and one or more of the

[^4]papille will meet and fuse with their neighbours on the opposite lamella, forming the seattered synapticule which hold the gill-plates in shape. Other simple features such as the incomplete diaphragm, undeveloped siphons, indiscriminate use of all the gills as a rudimentary marsupium, and the little modified subglobular-quadrate glochidia, may be noted.

From this simple type differentiation has proceeded in at least two directions, one marked by the sonthern hemisphere groups, apparently representel in their simplest condition by Myria (Hyriina), while Spatha (Mutelinæ?) is a more specialized phase, the other embracing the numerous and diverse genera which occur in the Northern Hemisphere. The simplest aspect and the one least modified from the fundamental Margaritanoid structure among the latter is exemplified in Quadrula (Quadrulinæ), in which the interlamellar gill-connexions are completely coalesced into definite water tubes, the diaphragm fully developed, formed solely by the gills, while on the other hand all the branchix are retained as a simple marsupium and the glochidia remain undifferentiated. This group has apparently given rise to another closely allied one, in which the brood-pouch has been restricted to the outer gills only. Several American genera, Pleurobema, Rotundaria, Elliptio, etc., belong to this division, which may be termed the Pleurobemine. From the Pleurobemine in turn no less than two stocks have arisen. One of these is represented by Lampsilis (Lampsiline), in which a portion of the outer gills in the female we permanently modified to serve as a highly organized marsupium but in which the glochidia remain simple. From this type Proptera (Propteriure) has been derived, distinguished by its peenliarly modified 'axe-head' larve, thus representing the culmination of the evolutionary ercle in this branch of the Naiads. Unio (Unioninæ) represents the other stock derived from the Pleurobeminæ. Here the glochidia have adranced in specialization, becoming triangular and armed, resembling a spade-head in shape, while the simple marsupium of Pleurobema is retained. Anodonta is a specialization of this type in which the onter gills of the female become transformed into a temporary highly modified marsupimm during the gravid season, having advanced pari passu with the modification of the glochidia, thus resulting in a condition analogous to that of Spatha and Proptera. So much for the interual structure; the problem now confronts the systematist as to how all this may be best classified.

A species in the Hyattion sense consists of a group of related individnals having a similar genetic history and possessing a tendency to evolve along strictly analogous lines. If this group mar be divided into sub-groups which oceupy a particular stage in the developmentseries, then they mar be termed sub-species, ${ }^{1}$ while a group of species

[^5]derived from the same immediate stock constitutes a superspecies or 'group' of species. Similarly, a genus is a group of allied species evolving along approximately parallel lines, and a family a group of genera whose history is essentially analogous, while sub-genera and sub-families, and supergenera or 'groups' of genera and superfamilies, bear analogous relations to genera and families respectively that subspecies and superspecies do to species.

Applying these criteria to the present group it is obvious that as a whole the Naiades constitute a well-defined superfamily, the Unionoidex, while the different development stages, of which there are nine, constitute sub-families whose relations may be graphically expressed by the accompanying diagram. These belong to five radicles, and these radicles the writer would regard as families since they are more or less equal in value and conform to the definition. Therefore, on the basis of our present knowledge the Naiades may be tentatively classified as follows:-

> Superfamily UNIONOIDE (Swainson), 1840.
> Margaritanide (Ortmam), 1910.
> Hrride (Swainson), 1840.
> Hyriince, s.s. Mutelince (Gray), 1847.
> Quadrulide (Von Ihering), 1901.
> Quadruline, s.s.
> Pleurobemine, nor.
> Lampsimide (Von Ihering), 1901.
> Lampsiline, s.s. Propterine, nor.

Unionide, Swaiuson, 1840.
Unionine, s.s.
Anodontine, Swainson, 1840.
It is probable that with a knowledge of more genera than have at present been studied and made known, ${ }^{1}$ the number of families and sub-families will be considerably increased since the internal characters of this group have specialized along a series of similar but distinct lines.

Family MARGARITANID風 (Ortmann), 1910.

Shell of moderately large size, quadruliform, unioniform, or margaritaniform ; animal as lescribed above, tachytictic ; glochidium simple; habitat fluviatile and lacustrine.

The Margaritanidx, in spite of the fact that modifications of the shell have taken place to a very considerable degree in all the known

[^6]
THE UNIONOIDE.E (including only the groups from which data are available).

recent representatives, indicate a primitive phase of Naiad structure in so far as the anatomy is concerned.

Margaritana, the only recognized genus, appears to be confined to the Northern Hemisphere. However, M. monodonta, an American species, should doubtless be separated as a distinct genus; it differs in important particulars from II. margaritifera in the adolescent shell, a certain indication of heterogeneous origin.

Genus Margaritana, Schumacher.

Mya (sp.), Linné, 1758 (M. margaritifera, L.) ; Unio (sp.), Retzins, 1788 (M. margaritifera, L.); Margaritana, Schumacher, 1817 (11. margaritifera, L.) ; Alasmodonta (sp.), Barnes, 1823 (A. arcuata, Barnes=1I. margaritifera, L.) ; Damaris, 'Leach MS.,' Gray, 1847 (M. margaritifera, L.), in synonvins ; Baphia, 'Menschen,' H. \& A. Adams, 1857 (M. margaritifera, L.).
Type, Mya margaritifera, Linné.

Sub-genus Pseddunio, Haas.

Lymnium (sp.), Moquin-Tandon, 1855 (U. simuata, Lam.) ; Pseudunio, Haas, 1910 (U. sinuata, Lam.).
Type, Unio sinuata, Lamarck.
Sub-genus Pseudunio. Shell of moderate size, areraging 120 mm . in length, sub-solid, elongate-elliptical, umbones marked br a few fine sub-nodulous ridges, moderately elevated and lying about one-third of distance from anterior extromity, lateral teeth fairly leveloped; nacre of concarity marked with numerons small muscle-scars; habitat lacustro-fluriatile and fluriatile.

Sub-genus Margaritana, s.s. Shell similar to preceding, but the lateral teeth largely or entirely obsolcte ; Pseudunio stage completel very early during adolescence; habitat running streams.

Margaricana (Psmudunio) Herrei, n.sp. Pl. VII, Fig. 17.

Margaritana 'margaritifera, Linn.', Walker, 1910 (partim).
Shell rather large for genus, resembling M. margaritifera in general outline, but narrower and more compressed, with a straighter dorsal line; teeth not obsolete, two clarate pseudo-cardinal and two laterals of moderate length in right valre, one each in left; habitat apparently lacustrine. Length 115 , breadth 40 , depth of valre 12 mm .

Eocenc: local freshwater beds in Tejon formation, California.
One-fourth mile above Carnegic Pottery plant, in cut along Western Pacific Railway, Corral Hollow, Tesla, California (Stanforl University Geological Surver, per W. H. Ochsner) (H. Hannibal).

Named after 1)r. A. C. Herre, under whose guidance the writer first became interested in the study of molluses.

> Margaritana margaritifera (Linné).

Mya margaritifera, Linné, 1758 ; Alasmodonta arcuata, Barnes, 1823 (syntonic form).

Margaritana margaritifera falcata (Gould).

Alasmodonta falcata, Gould, 1850 (syntonic form, hardly typical); Alasmodon Fubacnsis, Trask, $185^{\circ} 5$.
J. murgaritifera. Shell of moderate size, elongate-elliptical, umbones rather low, lateral teeth sub-obsolete in normal adult, nacre usually bluish or pinkish; habitat rapid streams.

Boreal portion of Palæarctic and Atlantic seabord of Nearetic regions, infrequently with falcata in Californian Province.

1I. margaritifera falcata. Shell similar to margaritifera, but the lateral teeth totally obsolete, psendo-cardinals much reduced, nacre prevailingly lurid purple or orange; margaritifera stage completed before mid-adolescence; habitat similar.

American Prosince in upper Missouri River. Fraser, Columbia, Klamath, Utah, Nerada, and Coast Range Srstems.

Quaternary: Bonneville Lake beds, Utah; Lahontan Lake beds, Nevada.

The distribution of this species has been made the subject of an interesting paper by Walker. ${ }^{1}$ The supposed Eocene record is the Margaritana Merrei, but the poorly preserved material then at hand from 'lesla, California, showed no lateral tecth. It is probable that M. margaritifera falcata at no point extends south of the latitude of Monteres Bay, California.

The very young of this molluse were once obtained, with Spherium, in a little spring under the bank of a brook in which the adults were common.

Unrecognized: 'Unio (Margaritana)' onariotis, Mayer, 1869. Miocene (?) of Alaska.

$$
\text { Family UNIONID E, Swainson, } 1840 .
$$

Shell of moderate size, unioniform, margaritaniform, or anodontiform; animal as described above; glochidium spadiform, each valve armed with a spine; habitat fluviatile and lacustrine.
Sub-family UNIONIN.E, s.s.

Shell of moderate size, unioniform or margaritaniform ; animal as described above, tachylictic (?) ; habitat fluviatile and lacustrine.

Genera: Unio, Migranaja.

$$
\text { Sub-fumily ANODONTINE, Swainson, } 1840 .
$$

Shell of moderate size, thin or sub-solid, unioniform, margaritaniform, or anodontiform ; animal as described abore, brachylictic; habitat lakes and streams.

Genera: Anodonta, Gonidea, Arnoldina.
The recognition of two Unionidæ, unquestionably congencric with living European species, in the Eocene-Oligocene of the Pacific Coast, throws interesting light upon the former ranges of these genera, not to mention the evidence afforded of their cousiderable antiquity and the fixity of their characters.

[^7]Genus Unio, Retzius.
Mya (sp.), Linné, 1758 (M. pictorum, L..) ; Unio, Retzius, 1788 (M. pictorum, L.); Lymnium, Oken, 1815 (IV. pictorum, L.); Unionea, Rafinesque, 1815 (emendel form); Mysca, Turton, 182.2 (MI. pictorum, L.).

Type, Mya pictorum, Linné.
Shell of moderate size, a veraging 60 mm . in length, sub-solid, elongateelliptical, anteriorly sub-truncate, somewhat pointed posteriorly, slightly indented in front of posterior terminus, umbones small, lying about one-third of distance from anterior end, rather low, and marked by a few doubly looped nodulous ridges, two lateral teeth, and one well-developed and one more or less obsolete pseudo-cardinal in left ralve, oue lateral and one pseudo-cardinal in right ralse, psendoeardinals acienlar, lying sub-parallel to hinge; habitat lacnstrofluviatile.

Unio transpacifica, Arnold \& Hannibal, n.sp. ${ }^{2}$ Pl. VII, Fig. 18.
Shell of moderately large size, varying from compressed to somewhat inflated, very similar to U. pictorum, but proportionately broader, partieularly in the umbonal region, less distinctly truncate anteriorly, margin of shell slightly sinuate in front of posterior extremity, hinge heavier than in pictorum, a second psendo-cardinal imperfectly developed in left valve; habitat apparently lacustrine.

Type: length 58, breadth 30, depth of valves 20 mm . Cotrpe (cut into exposing hinge in both ralves): length 70 , brealth 35 , depth of valres 26 mm .

Eocene: local freshwater beds in Tejon formation of Washington and California.

Bluffs along Olequa Creek at shoals, one and a half miles abore town (types); above shoals two miles above town; bend below railroad bridge, one-third mile below town, Little Falls, Washington (H. Hannibal).

One-fonth mile above Carnegie Pottery plant, in cutting along Western Paeific Railway, Corral Hollow, 'Tesla, California (Stanford University Geologieal Survey, per W. H. Ochsner) (H. Hannibal).

The first true American Unio known.
' Onio' penultimus, Gabb.
Pal. Cal., i, p. 182, pl. xxiv, fig. 164, 1864.
Eocene-Tejon formation: coal-mines near Mount Diablo, California.
Whatever may be said of this species, the supposed type of which, in a very fragmentary condition, is preserred in the Geological Museum at the University of California, it is not a Naiad at all. It bears more resemblance to an Anomia than any other genus which the writer could recall while examining it.

[^8]
Genus Migranaja, n.gen.

Unio (sp.), Lamarck, 1801 (Unio Vittoralis, Lam.).
Trye, Unio littoralis, Lamarck.
shell of moderate size, areraging 50 mm . in length, sub-solid, ovate-elliptical, crassiform, rounded in front and behind, umbones broad, elevated, and marked by mumerous rather fine wary ridges, which extend out on later growth, grading into obsolete cherrons; two lateral and two pseudo-cardinal teeth in left valve and one each in right, the pseudo-cardinals clarate, stumpy, and lying obliquely tramsverse to hinge ; habitat lacustro-fluviatile.

The present group, which does not seem to have been heretofore distinguished from Unio, but differs obviously in the form of the hingeteeth and early growth of the shell, has a distribation, considering both fossil and recent records, from Eastern Oregon to Spain, equalled in the Naiades only by Margaritana, Unio, and Anodonta.

> Migravaja Condoni (White).

Unio Condoni, White, 1885.
Shell large for genus, similar in outline to littoralis, but distinguishable by the broader, more inflated umbonal region; hinge essentially the same, but cardinal teeth hearier; labitat apparently lacustrine.

Oligocene: local freshwater beds in upper portion of John Day formation, Oregon.

Genus Anodonta, Lamarek.

Mytilus (sp.), Linné, 1758 (M. cygneus, L.); Anodontites (sp.), Brnguière, 1792 (M. cygnens, L.) ; Anodonta, Lamarck, 1799 (MI. cygneus, L.); Anodon, Oken, 1815 (emended form); Anoduntes, Cuvier, 1817 (emended form); Brachyanodon, ${ }^{1}$ Fischer \& Crosse, 1893 (A. coaretata, Anton $=$ A. impura, Say).
T'ype, Drytilus cygneus, Linné.
Shell of moderate size, averaging 50 mm . in length, anodontiform, thin, broadly ovate, ovate-elliptical, or elongate-elliptical, compressed or inflated, beaks barely elerated above general curvature of shell, and marked by low ealycules and a varying number of fine wary knotted ridges, hinge edentate and gently curved; adolescent growth broadly orate, alate and compressed ; habitat lacustrine and lacustroHuriatile.

Anodontites of Bruguiere has recently been revived for the present group withont, in the writer's opinion, good cause. The name appears to have been originally intended for all the edentate Naiades of Europe and elsewhere. Drytilus cygnens and anatimus are mentioned, but the first species, and the ouly one deseribed, is the South American A. crispatu, a species of Hyriinæ. In 1799 Lamarek, doubtless aware of Bruguière's group, proposed Anodonta for the European species, thus incidentally restricting Anodontites to the single South

[^9]

American species. Attempts a hundred rears or more later to establish cygnea as the trpe of Anodontites are post mortem.

The Simpsonian Anodonta included a raried assortment of edentate Anodontinæ such as imbecillis, grandis, marginata, dejecta, and suborbiculata, derived without doubt from sereral none too closely. related stocks possessing hinge-tecth. Since the resemblances are due chiefly to parallel modifications, these can hardly be regarded as congeneric with A.cygnea, which is the onl 5 true Anodonta, in America at least. The proper segregation of these species which lack the most important index to their relationships is hardly a simple problem. The anatomy, of prime import in the discrimination of more comprehensice groups, offers only partial aid, and other characters, such as the adolescent stages and beak sculpture, should enter into consideration. A too conservative use of the latter character cannot be recommended, however : the derelopment of plications, pustules, etc., is subject to considerable individual and colonial rariation in species which hare not entirely passed berond the sculptured stage, and it is reasonable to suppose that this rariation remains latent. though the sculpturing is carried back to the earliest post-glochidial growth. Anşone may satisfy himself of the truth of this by examining a large series of Anodonta cygnea from random localities.

Avodonta cygnes (Linné). Pl. V, Figs. 3, 4, 8.
Jytilus cygneus, Linné, 1758 ; M. anatimus, Linué, 1758 (srntonic form) ; A. Cellensis, C. Pfeiffer, 1821 ; A. ponderosa, C. Ṕfeiffer, 1825 (srntonic form); A. Uregonensis, Lea, 1836; Anodon cognata, Gould, 1850 ; A. Fennerlyi, Lea, 1861.

Anodonta cygnea impera (Say). Pl. V, Figs. 1, 2, 7.
A. impura, Say, 1829 ; A. Nuttalliana, Lea, 1838 ; A. Wahiamatensis, Lea, 1838 (syntonic form) ; A. coarctata, Anton, 1839 (syntonic form) ; A. Californiensis. Lea, 1852; -1. triangularis, Trask, 1855 (srntonic form) ; A. rotundorata, Trask, 1805 (syntonic form); A. exilior, Lea, 1871 (srntonic form); A. Nuttalliana, var. Idahoonsis, Hemphill, 1891 (srntonic form); A. Chapalensis, Crosse \& Fischer, 1892 (syntonic form) ; A. Chalcoensis, Crosse and Fischer, 1893 (srntonic form); \mathcal{A}. (Nuttalliana rar.?) lignitica, J. G. Cooper, 1894 ; A. Fettlemanensis, Arnold, 1910 (syntonic form).
Anodonta crgyea Beringians (Middendorf). Pl. Y, Figs. 5, 6.
A. Zellensis, var. Beringiana, Middendorf, 1851 ; A. Fouconensis, Lea, 1867; A. Youkanensis, Lea, 1868.
Anodonta cygnea impura. Shell of moderate size, quadrate-discoidal, alate, decidedlr broader posteriorly, rather compressed, early growth similar in outline to adult; habitat sluggish streams and lakes.

Western and mountainous portions of Mexican Province from the ricinity of Mexico City northward. Arizona, Los Angeles, Mojare, Colorado, Coast Range, Klamath, Nerada, Utah, and Columbia Srstems, ravely farther north.

Quaternary: Bonnerille Liake beds, Utah; Lahontan and Carson Prison Lake beds, Nevada ; Owens and Le Conte Lake beds, California. Pliocene: Kettleman, Sauta Clara, and Cache Lake beds, California. Miocene: Contra Costa Lake beds, California.
A. cygnea. Shell similar to preceding, usually somewhat larger, however, elongate-ovate, sub-alate, somewhat broader posteriorly, tapering to a blunt point, moderately inflated, growth to midadoleseence as in impura; habitat similar.

Entire Palæaretic Region. Alaska, Fraser, Columbia, Klamath, Utah, and Nevada Systems, but occasionally farther to north or south.

Quaternary: Bonneville Lake beds, Utah. Pliocene: Kettleman Lake beds, California ; Idaho Lake beds, Idaho and Nevada.
A. cygnea Beringiana. Shell similar to preceding but attenuateelliptical, not broader posteriorly, barely alate, strongly inflated; impura stage pushed back to early adolescence, cygnea stage to midadolescence; habitat same.

North-Eastern Siberia. Yukon, Alaska, Fraser, rarely in Columbia System.

The accompanying Plate V illustrates the evolution of this species from impura through cygnea to Beringiana. It seems probable that impura is of West American origin, and after giving rise to a northern sub-species, cygnea, the latter spread to Asia by a land-bridge during the upper Miocene at a time wheu the climate was somewhat warmer than at present, and cygnea doubtless oceupied all Alaska. Once in Asia the extension of cygnea to Europe and the Mediterranean region has been ouly a matter of time and facility in taking advantage of stream-captures, etc. There appears to be no evidence that more than the one race is represented in the Old World outside of Kamehatka, though oecasional atavistic individuals suggest impura, while others tend to acquire the characters of Beringiana. It seems improbable that the European Najadologists would overlook these well-marked sub-species if ther existed, so thoroughly has this species been studied. Anodonta cygnea Beringiana appears to be a sub-species of comparatively late origin, arising in Alaska, doubtless, and taking adrantage of the earlए Quaternary land-bridge to migrate to Siberia. Had it originated in Kamchatka or crossed the Bering Straits during the Miocene connexion it would be difficult to explain why it has not extended its range farther to the westward.

The problem of temperature appears to be an important factor in limiting the north and south distribution of the rarious sub-species. It is noteworthy that cygnea does not extend in the Old World beyond the latitudes of its extreme limits in the Californian Province.

The very young of this species have been frequently obtained in organie mud with Corneocyclas pulchella.

Genus Goxidea, Conrad.
Anodonta (sp.), Lea, 1838 (A. angulata, Lea); Gonidea, Conrad, 1857 (A. Randalli, Trask $=$ A. angulata, Lea, first species).

Type, Anodonta angulata, Lea.

$$
1
$$

نू

－\forall OIyヨWV HLyON Nyヨ1SヨM WOyy SヨIOヨdS MヨN

Sub-genus Limyobasilissa, n.sub-gen.
Margaritana (sp.), J. G. Cooper, $189+$ (II. subangulata, J. G. C.).
Trpe, Margaritana subangulata, J. G. Cooper.
Sub-genus Limnobasilissa. Shell of moderate size, averaging 60 mm . in length, margaritaniform, sub-solid, elongate-quadrate, rounded in front, obliquely truncate behind, postero-ventral margin barely acutely angular, posterior slope sub-rounded, beaks marked by several warr ridges which make an abrupt bend on crossing the postero-ventral slope, early growth similar in outline to adult, hinge with a reduced clarate psendo-eardinal in each valve, hinge-line sinuate in front of umbones; habitat lacustrine.

Sub-genus Gonidea, s.s. Shell of moderate size, similar to Limmobasilissa, but anodontiform, more or less elongate-trigonal and anteriorly pointed, posterior slope more or less carinate, hinge with an obsolete pseudo-cardinal in each valve or edentate, but slightly sinuate in front of umbones; Limnobasilissa stage carried back to early adolescence; habitat fluviatile.

Gonidea (Limnobasilissa) angulata subangulata (J. G. Cooper). Mfargaritana subangulata, J. G. Cooper, 1894 ; G. Coalingensis, Arnold, 1910 (syntonic form) ; G. Coalingensis, var. Cooperi, Arnold, 1910.
Shell of moderate size, elongate-quadrate, compressed, of about equal width posteriorly and anteriorly, rounded in front, rather squarely decurtate behind, postero-rentral slope barely angular; beaks low, hinge with a reduced pseudo-cardinal in each ralse; habitat apparently lacustrine.

Pliocene: Kettleman, Santa Clara, and Cache Lake beds, California. Gonidea angulata (Lea).
Anodonta angulata, Lea, 1838; Anodon feminalis, Gould, 1850; A. Randalli, Trask, 1855 ; A. biangulata, Sowerby, 1869.

Gonidea angulata Haroldiana, Dall. Pl. VI, Fig. 2.

Anodonta angulata, var. subangulata, Hemphill, 1891 , not Anodon(ta) subangulata, Anthony, 1865; G. amgulata, ras. IIaroldiana, Dall, 1908.
Shell of molerate size, elongate-quadrate, rather compressed, somewhat broader posteriorly, rather obliquely truncate behind, posteroventral slope exhibiting a rudimentary carina, beaks barely elevated, hinge with a rery obsolete psendo-cardinal in each valve; early adolescent stage as in mature subungulata; habitat quiet rivers, creeks, and slonghs.

Fraser, Columbia, Klamath, Coast Range, and Los Angeles Srstems.
G. angulata. Shell of moderate size, eloncate-trigonal, strongly inflated in the region of the postero-rentral ridge, which is sharply carinate, giring the shell an appearance of being cut off abruptly behind, pointed anteriorly, broad and obliquely truncate posteriorly, beaks somewhat elerated, hinge edentate and but slightly sinuate; shell similar to Haroldiana at mid-adolescence, to subangulita in rery young stages; habitat ricers and brisk streams.

Geographic distribution same as Haroldiana.
G. angulata, angulata Maroldiana, and angulata subangulata all occupr or occupied the same geographic range. Angulate is confined to rapid streams and rivers with considerable current; Haroldiana to sloughs, sluggish creeks, and slow-moring rivers; while subangulata was an abundant Naiad in the great lakes which existed on the Pacific Coast during the Pliocene period, a situation in which angulata is never and Haroldiana seldom found. This is an excellent instance of a change of station accompanying the evolution of the shell, and therefore of particular interest.

In attempting to classify this species genetically the writer has been in somewhat of a quandary. Either two comprehensire stages equiralent and analogous to sub-genera in all the other Unionidx must be treated as one sub-genus (necessitating a definition sufficiently broad to cover half the family and several genera which have nothing to do with this series), or the species must be arbitrarily divided into two species simply because the extremes are sufficiently distinct, without regard for an unbroken chain of intermediate stages, or one sub-species must be placed in one sub-genus and $t \pi o$ in the other. The last alternative has been followed, since it is most nearly in keeping with natural relationships in the Naiades, though the writer does not regard it as desirable from a classifieation standpoint. It is an unfortunate limitation of the Linnean System that no disposition was made in case intermediate forms hare not died out, or died out but left fossil remains.

The roung of this species hare been found in deep quiet reaches of water burrorring into stiff mud or clay; jurenile Ilaroldiana occur in similar situations.

Goxidel Hempulli, n.sp. Pl. Vil, Fig. 19.

Shell reminding in a reneral war of G. angulata Haroldiana, but lecisledly smaller, proportionally more elongate, the postero-rentral ridge less sharply defined and terminating in a rounded margin, shell not broader posteriorly, and less obliquely decurtate behind, hinge with a very rudimentary pseudo-cardinal in each valre; habitat apparently lacustrine.

Length 31 , breadth 14 , depth of valve 5 mm .
Miocene: Contra Costa Lake beds, California.
Water-tunnel, head of Telegraph Cañon, Berkeles Hills, California. Nimed after Mr. Henry Hemphill, the reteran collector.

> Genus Aholdist, n.gen.

Anodonta (sp.), Leiris, 1875 (A. djjecta, Lewis).
Type, Anodonta dejecta, Lewis.
Shell of rather large size, averaging 80 mm . in length, anodontiform, sub-solid, elongate-elliptical, distinctly broader posteriorly, moderately inflated, beaks which are not elerated above general currature of shell, marked by prominent calreules and a few coarse doubly looped ridges alternating with pits which lie along the postero-ventral ridge,
early growth elongate-orate, hiuge edentate aud gently curved; habitat lacustro-fluriatile.

Arnoldina, named after Dr. Ralph Arnold, includes, so far as known, the sole species, Anolonta dejecta, Lewis, a molluse whieh has proved an anomaly to eversone who has studied it. The development, peculiar beak-sculpture, and an indeseribable velvety texture of the shell preelude its reference to Anodonta or any allied genus.

Arnoldina dejeeta (Lewis). Pl. VI, Fig. 9.

Anodonta dejecta, Lewis, 1875, in Yarrow, 1875; A. Mearnsiana, Simpson, 1893.
Shell as in genus; inhabits ponds and sluggish streams.
Arizona System.
Quaternary : Le Conte Lake beds, California.

Superfamily CYRENOIDE E (Graj), 1840.

The Cyrenoideæ, as here understoon, embrace three families-the Cyrenidæ, Gray, 1840 (Corbieulidæ, Gray, 1847), a comprehensive and probably not entirely homogeneous group of brackish-water bivalves, which does not concern this disenssion particularls, the Sphæriidæ, Bourguignat, 1885 (Cycladæ, Fleming, 1828), and the Corneocycladidæ, nor. (Pisidiadæ, Gray, 1857), aquatic groups, both of which are represented west of the Rocky Mountains.

The simplest forms in each family have, or at one time had, rudimentary hinge-teeth, a quadrate-elliptical form, and low subcentral umbones. From this type there has been a general tendency to develop a moderately complex hinge, the teeth corresponding to the general formula - R. 101-0101-101, L. 010-1010-010 ${ }^{1}$ - followed ultimately by its degeneration, while a trigonal outline and high sub-terminal umbones are acquired. In the Cyrenidæ and Sphæridæ the umbones migrate toward the anterior extremity, a modification analogous to that taking place in the Unionoideæ and rarions marine Peleeypoda, notably the Mytilidx and their allies. In the Corneocyeladidæ, however, the migration takes place toward the posterior end. The eause is not understood, but there is reason to snspect it to be produced in the same manner as the sinistral coiling of the Gastropoda-the positions taken by the rarious cells in the early clearage stages of the developing embryo.

An interesting feature of the study of the Sphæriidæ and Corneocyeladidx, somewhat aside from the systematie phase, is the colour of the epidermis. Anyone, with the assistance of a few drops of oxalie acid, may conrince himself that the shells of the members of these families are uniformly a pale-straw colour. Deposited in the epidermis, howerer, at the time of its formation, are generally rarsing amounts of iron salts which produce the grey, green, brown, and

[^10]black colours, commonly described as specific characters. Not improbably this is a protective derice on the part of the molluse; the writer's experience would indicate that such is the case.

Family SPH ERIID E, Bourguignat, 1885.

Shell small, quadrate, orate, or trigonal, inflated, concentrically striate, umbones sub-central or somewhat anterior, hinge more or less dereloped, eardinal teeth small and feeble, laterals short and weak, ligament deep-seated and inconspicuons, pallial line simple; animal hermaphroditic, viviparous; habitat fluviatile and lacustrine.

Spherium and Musculium represent this family in the Nearctic Region. The species are characteristically widespread; none of the recent Californian forms are confined west of the Rocky Mountains, and at least three are common to the Palæaretic Region.

Genus Sphericm, Scopoli.
Tellina (sp.), Linné, 1758 (T. cornea, L.); Spharium, Scopoli, 177 (T. cornea, L.) ; Cyclas (sp.), Bruguière, 1798, Lamarek, 1799 (T'. cornea, L.), not as restricted by Link, 1807, and Dall, 1903 ; Cornea, Megerle, 1811 (C. communis, Meg. = T. cornea, L.); Cycladea, Rafinesque, 1815 (emended form of Cyclas); Cycladites, Krüger, 1848 ; Corncola, Clessin in Westerlund, 1890 (T ' comea, L.), not Corneola, Held, 1837.

Type, Tellina cornea, Linné.
Sub-genus Amesoda (Rafinesque).
Amesoda, Rafinesque, 1820 (Cyclas similis, Sar) ; Pisum, Bourguignat, 1857 (Cyclas rivicola, Leach), not Pisum, Megerle, 1811; Sphariustrum, Bourgnignat, 1854 (Cyclas rivicola, Leach); Cyrenastrum, Bourguignat, 1854 (Cyclas soluda, Normand).
Tspe, Cyclas similis, Say.
Sub-genus Spharium, s.s. Shell of small size, areraging 10 mm . in length, sub-solid, quadrate-diseoidal, finely striate, beaks low, hingetecth small, poorly developed, cardinals oblique to hinge, laterals rather short; habitat lacustrine and fluriatile.

Sub-geuus Amesodu. Shell similar to preceding, but usually larger (averaging 15 mm . in length), and more solidly built, trigonal or quadrate-trigonal in outline, completely coarsely striate, beaks elevated, hinge heavier and better developed, one of the cardinals commonly bifid; Spharium stage passed during early adolescence; habitat similar to Spherium.

Spherium curneda (Linné).

Tellina cornea, Linné, 1758 ; C'yclas rhomboidea, Say, 1822.
Shell of moderate size, quadrate or quadrate-elliptical, moderately or strongly inflated; habitat lakes and quiet streams.

Boreal portions of Palaarctic and Nearctic liegions. Sukon, Fraser, and Columbia Systems.

Quaternary : Loess of eastern States.

Spiferiem tente (Prime).
Cyclas tenuis, Prime, 1851; Spharium occidentale, Prime, 1860 ; S. Uintaense, Call, 1886 ; S. Walkeri, Sterki, 1901.

Shell small, quadrate-discoidal, moderately compressed; habitat lakes and marshes.

Boreal portions of Nearctic Region. Yukon, Columbia, and Utah Systems.

Quaternary : Loess of eastern States.

Spherium patellda (Gould).

Cyclas patella, Gould, 1850; C. fabale, Prime, 1851; Spharium Primeanum, Clessin, 1878.
Shell of moderate size, quadrate-elliptical, somewhat compressed ; habitat marshy lakes and streams.

Boreal portions of Nearctic Region. Fraser and Columbia Systems.

> Spherium (Amesoda) smile (Say).

Cyclas similis, Sar, 1817 ; C. striatina, Lamarck, 1818 ; C. staminea, Conrad, 1834; C. dentata, Haldeman, 1841; C. aurea, Prime, 1851 ; C. solidula, Prime, 1851; C. nobilis, Gould, 1855 ; Spharium Vermontanum, Prime, 1861; C. tumidum, Baird, 1863 ; S. 'sulcatum, Lam.', Keep, 1888 ; S. Hendersoni, Sterki, 1906 ; S. Pilsbryanum, Sterki, 1909 ; S. Kettlemanensis, Arnold, 1910 ; S. Cooperi, Amoll, 1910; not S. 'simild, Say', F. C. Baker, $1898=S$. sulcatum, Lam.
Shell of moderate or large size, qnadrate-trigonal, varying from moderately compressed to inflated, rather finely or coarsely striate; habitat lakes, marshes, and streams.

Nearctic Region. Fraser, Columbia, Klamath, Utah, Nevada, Colorado, Arizona, and Coast Range Systems.

Quaternary: Loess of eastern States; Bonneville Lake beds, Utah; Lahontan Lake beds, Nerada. Pliocene: Santa Clara, Cache, and Kettleman Lake beds, California.

Sphericm (Amesoda) Idahoense (Meek).
Spharium (?) Idahoensis, Meek, 1870 ; S. rugosum, Meek, 1870 (fig. of type only $=$ juv. individual).
Shell very large, quadrate-trigonal, inflated, coarsely sparsely striate; habitat apparently lacustrine.

Eocene: Truckee Lake beds, Nevada; Payette Lake beds, Idaho.
Spherium (Amesoda) Rogersi, n.sp. Pl. VII, Fig. 21.
Shell large, elongate-trigonal, moderately inflated, coarsely striate ; habitat apparently lacustrine.

Length 20 , breadth 14.5 , lepth of ralves 9.5 mm .
Eocene : local freshwater beds in Tejon formation, California.
One-fourth mile above Carnegie Pottery plant, in cutting along Western Pacific Railway, Corral Hollow, Tesla, California (Stanford University Geological Surrey, per W. H. Ochsuer) (H. Hannibal).

More elongate, more compressed, and more coarsely striate than S. sulcatum, which it most resembles. Named after Dr. A. F. Rogers, chicf of the Stanford University party who discovered the freshwiter deposits in the Eocene of Corral Hollow.

Spiteriun (Anesoda) Catherine, m.sp. Pl. Viti, Fig. 20.
Shell small, striate, elongate-arcrform, umbones high, nearly medial, hinge-line rather straight, anterior and posterior margins rounded; habitat apparently lacustrine.

Length 5 , breadth $3 \cdot 8$, depth of valres 4 mm .
Eocene: Truckee Lake beds, Nevada.
Hill near Hawthorne on the Belmont stage-road, Nevada.
There is some doubt whether this speeies is really a Spherium; the arceform shape is peculiar. Named after Mrs. Catherine Stevens, of San Diego.

Spheridu (Amesod.a) Andersonfanum, n.sp. Pl. VI, Fig. 11.
Shell rery large, comparing in size with S. (A.) rivicola of Europe. but proportionally less inflated, less elongate, and trigonal-quadrate rather than trigonal-orate, striate, beaks high; habitat apparently lacustrine.

Length $17 \cdot 5$, breadth 15 , depth of ralve 4 mm .
Pliocene: Idaho Lake beds, Idaho and Oregon.
Badland Hills, one mile east of Sand Hollow, Oregon (type) (R. B. Moran); near Baker City, Oregon (F. M. Anderson, per I. B. Sturges) ; Oil City, Idaho (E. L. Ickes).

Named after Mr. F. MI. Anderson, of the California Academy of science, who has kindly loaned the writer some interesting material from the Pliocene lake deposits of Eastern Oregon.

Not subsequently recognized:
Spharium Spokani, Baird, 1863.
Spokane and Kootenai Rivers, British Columbia.
Spherimm Califormicum, Clessin, 1878.
California.

Genus Muscelacy, Link.

Tellima (sp.), Müller, 1774 (1. lacustris, Miill.); Cyylas (sp.), Draparnaud, 1805 (C. caliculata, Drap. = T. lucustris, Miill.); Musculium, Link, 1807 (T. lacustris, Müll.) ; Calyculina, Clessin, 1872 (C. caliculata. Drap. = T'. lacustris, Müll.) ; Primella, J. G. Cooper, 1890 (Spherimm (Primella) Raymondi, J. G. C. = T. lacustris, Müll.).

Type, Tellina lacustris, Mïller.
Shell of moderate size, areraging 10 mm . in length, fragile, quadrate, quadrate-orate, or quadrate-trigonal. finely concentrically and radialls striate, umbones elerated and usually caliculate. sub-central or slightly anterior, hinge rudimentary, the teeth minute, eardinals frequentlr undereloped or when developed those in right ralre not separated above; liabitat lacustrine.

For a genus possessing such a fragile shell it is remarkable that Musculium should oceur frequently as a fossil. It might be noted that Spharium Florissantense, Ckll., of the Oligocene of Colorado, groups here.

Mesculicar lacestre (Miiller).
Tellina lacustris, Müller, 177t; C'yclas Ryckholti, Normand, 1841 ; C. truncata, Linsles, 1848 ; C. cardissa, Prime, 1851 ; C'. rosacea, Prime, 1851 ; C. securis, Prime, 1851 ; C. spherica, Anthony, 1852; Spharium lenticula, 'Gould,' Prime, 1862; ?S. Cooperianm, Prime, 1869 (nude name); S. (Primella), Raymondi, J. G. Cooper, 1890.

Shell of small or moderate size, quadrate-trigonal, inflated in umbonal region, beaks high; habitat lakes and marshes.

Palæarctic and Nearctic Regions. Fraser, Columbia, Klamath, Coast Range, and Mojare Systems.

Quaternary: Loess of eastern States; post-Glacial deposits of Vancouser Island.

Muscrlium orale (Férussac).

Cyclas ovalis, Férussac, 1807 ; C. transiersa, Say, 1829.
Shell large, elongate-quadrate, somewhat compressed, but rarying in this respect, umbones high; habitat lakes and marshes.

European and American Prorinces, possibly extending into Colorado System.

Muscclicm partumeicm (Say).

Cyclas partumeia, Say, 1822 ; C.elerata, Haldeman, 1841 ; C. Jayensis, Prime, 1851 ; Spharium 'patella, Gould', Keep, 1888.
Shell large, quadrate-orate, moderately or but slightly inflated, umbones low ; habitat lakes and marshes.

Nearctic Region. Klamath and Coast Range Srstems.
Quaternary: Loess of eastern States. Miocene: Contra Costa Lake beds, California.

Family CORNEOCICLADID. \mathbb{E}, n.fam.

Shell small or minute, sub-solid, orate or trigonal, compressed or inflated, finels concentrically striate, umbones posterior or posteriorly sub-terminal, hinge well developed or more or less obsolete, ligament deep-seated and inconspicuous, pallial line simple; animal hermaphroditic, ririparous; halitat lakes, marshes, streams, and spriugs. less frequently in moist situations.

The Californian Corneocrcladidx belong exclusively to the trpe and principal group Corneocyclas. Corneocyclas is, however, not coextensive with the old genus Pisidium; Tellina Menslowiana. Sheppard, of Europe and the eastern States, and Pisidium cruciatum of Sterki (American Province) belong to Tropidocyclas, a group whose species indicate a radially sculptured stage now outgrown in their phylogenetic histories.

Many of the members of this family are of widespread occurrence. As frequently happens with microscopic species distributer over
considerable areas, there has been a rather unnecessary duplication of specific names and consequently much confusion of the literature. The revision of the Nearetic species has not been difficult since cotypes, locotypes, or named specimens (chiefly examined by the late E. W. Roper) of nearly all have been at hand, but the European species constitute a problem which the writer feels neither the inclination or eapability of undertaking; hence the synonymy of Comeocyclas pulchella, which extends to the Old World, is another story. It is probable that when the Palæaretic forms are thoroughly worked up they will be found to be comparatively few in number, as is true of the North American species. One of the chief stumblingblocks in classification seems to be the colomr of the epidermis. Since this is known to be not of hereditary consequence, and the grouping of the species offers no particular difficulties, the elucidation of the specific synonymy becomes a comparatively simple problem.

Genus Corneocyclas, Férussac. ${ }^{1}$

Tellina (sp.), Gmelin, 1788 (T. pusilla, Gmel.) ; Cyclas (sp.), Say, 1817 (C. dubia, Say = T. Virginica, Gmel.); Corneocyclas (pars), Férussac, 1818 (T. musilla, Gmel.); Phymesoda, Rafinesque, 1820 (C. dubia, Say = T. Virginica, Gmel.); Galuleja, Costa, 1839 (G. tenebrosa, Costa $=$ Pisidium pulchellum, Jenyus); Euglesia, 'Leach MS.,' Gray, 1840 (E. Menslowiana, 'Leach MS.' (not T. Monslowiana, Shepp.) = T. pusilla, Gmel.), in synonymy; Euglesu, Leach, 1852 (T. pusilla, Gmel.); Cycladina, Clessin, 1871 (T. pusilla, Gmel.) ; Cymatocyclas, Dall, 1903 (Pisidium compressum, Prime).
Type, Tellina pusilla, Gmelin.

Sub-genus Pisidium (Pfeiffer).

Cardium (sp.), Montagu, 1803 (Tellina amnica, Miill.); Pisidium, Pfeiffer, 1821 (P. obliquam, Pfr. $=T$. amnica, Miull.); Pera, 'Leach MS.,' Gray, 1840 (P. Alveiatilis, Leach MS. = T. ammica,

[^11]Miill.), in synonymy ; Pisum, Gray, 1847 (T. amnica, Müll.), not Pisum, Megerle, 1811 ; Cordula, Leach, 1852 (T. amnica, Müll.); ' Musculium, Link,' H. \& A. Adams, 1857 (T. ammica, Müll.); Fluminina, Clessin, 1873 (T. amnica, Müll.).

Type, Tellina ammica, Müller.

Sub-genus Pisidium. Shell small or minute, ovate, rather compressed, umbones low, somewhat posterior and naked, hinge well developed, cardinal teeth small and usually joined above in right valve, the anterior transverse, the posterior sub-parallel to hinge, laterals short and weak; habitat ehiefly in rivers.
sub-genus Corneocyclas, s.s. Shell similar to preceding but trigonal, umbones elevated, posteriorly sub-terminal, hinge rather poorly developed, teeth sub-obsolete; Pisidium stage usually completed in or shortly after leaving the marsupium (species which pass the Pisidium stage in the marsupium are frequently caliculate, due to the abrupt change in mode of growth); habitat lakes and springs, uncommonly in streams.

Corneoctclas (Pisidiual) polchella abdita (Haldeman).
Pisidim abditum, Halleman, 1841 ; P. ultramontamum, Prime, 1865 ;
P. Angelicum, Rowell, 1865; P. nivale, Westerlund, 1885 ;
P. Randolphi, Roper, 1895 ; P. Rowelli, Sterki, 1903 ; P. abditum

Iluachucanum, Pilsbry \& Ferriss, 1906.
Shell of moderate size, rather narrowly ovate and pointed anteriorly, compressed, beaks inconspicuous, hinge moderatel Γ developed; habitat streams, forms intergrading toward pulchella in lakes and springs.

Palæarctic and Nearctic Regions, Mexican Prorince.
Quaternary: Loess of eastern States; Summer Lake beds, Oregon.
Intergrading forms between this sub-species and pulchella are abundant and often hard to place.

Corneocyclas (Pisidiom) Meeki, n.sp. Pl. VI, Fig. 12.
? Spharium rugosum, Meek, 1877 (pars).
Shell large, broadly quadrate-ovate, moderately compressed, beaks low, hinge well developed; habitat apparently lacustrine.

Length 11, breadth 11, depth of valve 3 mm .
Eocene: Truckee Lake beds, Nevada; Payette Lake beds, Idaho.
Hill near Hawthorne on the Belmont stage-road, Nevada.
A large species reealling C. (P.) amnica, but broaler, more convex, and rather quadrate in outline.

Not recognized by subsequent writers :
Pisidium Sibericum, Clessin, 1870.
Siberia; Port Clarence, Alaska.
Pisidium borealis, Clessin in Westerlund, 1890.
Siberia; Port Clarence, Alaska.

Corneocyclas Virginica (Gmelin).

Tellina Virginica, Gmelin, 1788; Cyclas dubia, Sas, 1817.
Shell large, broadly trigonal-orate, moderately inflated, umbones conspicuons and decidedly anterior, hinge fairly developet; habitat lakes and streams.

Boreal portions of American Prorince. Yukon Srstem.
Quaternary: Loess of eastern States; Yukon Valler, Alaska.
A species more or less intermediate in character between Pisidium and Corneocyclas, but grouping best with the latter.

Corneocyclas pulchella (Jenyns).

Pisidium pulchellum, Jenyns, 1832; P. variabile, Prime, 1851; P. Adamsi, Prime, 1851 ; P. fervuginerm, Prime, 1851 ; P. noreboracense, Prime, $1853 ; P$. occidentale, Newcomb, $1863 ;$ P. insigne. Gabb, 1868; P. Harfordianum, Prime, 1869 (nude name), fide cotypes; P.arcticum, Westerlund, 1885 ; P. glaciale, Westerlund, 1885 ; P. seutellatum, Sterki, 1890; P. Roperi, Sterki, 1898 ; P. Ashmuni, Sterki, 1903; P. proximam, Sterki, 1906; P'. Californicum, 'Newcomb MS.,' Berry, 1908 (nude name), fide locotypes ; P. Marci, Sterki, 1909.
Shell of moderate size, prevailing smaller than sub-sp. abdita apparently, sub-trigonal, inflated, beaks prominent and sub-terminal, hinge not well developed, teeth sub-obsolete ; habitat springs, marshes, lakes, and moist places, infrequently in streams intergrading with abdita.

Distribution apparently same as abdita.
Quaternary: Loess of eastern States; post-Glacial deposits of Yancouver Island; Summer Lake beds, Oregon; Owens Lake beds, California. Pliocene: Cache Lake beds, California.

The specific and varietal names adopted for this Corneocyclas and its sub-species are probably not the earliest, but ther are the earliest which the writer with the literature and material at hand has been able to satisfy himself were actually applied to it.

Corneocyclas compress.a (Prime).

Pisidium compressum, Prime, 1851.
Shell of small size, distinctly trigonal, inflated, heaks narrow and high, sub-terminal, hinge moderately developed; hahitat lacustrine.

Nearctic Region. Yukon, Fraser, Columbia, Nerada, Klamath, Coast Range, Arizona, and Los Angeles (locally) Systems.

Quaternary: Loess of eastern States; Lahontan Lake beds, Nerada. Pliocene: Kettleman, Santa Clara, and Cache Lake beds, California. Miocene: Contra Costa Lake beds, California.

Corneocyclas rotuxdata (Prime).

Pisidium rotundutum, Prime, 1851.
Shell minute, ovate-trigonal, strongly inflatel, beaks broad, ele rated, and decidedly anterior, hinge much reduced ; habitat lacustrine.

Boreal portions of American l'rorince. Yukon System.

Corneocyclas xquilateralis (Prime).

Pisidium aquilaterale, Prime, 1852.
Shell of moderate size, inflated, beaks narrow, anterior, and someWhat elevated, hinge moderately developed; habitat ehiefly lakes.

Ameriean Prorince, Siberia. Yukon Srstem.
Quaternary : Loess of Kotzebue Sound, Alaska.
Corneoctclas Idahoensis (Roper).
Pisidium Idahoensis, Roper, 1896.
Shell of rers large size, orate-trigonal, strongly inflated, beaks broad, elevated, and deeidedly anterior, teeth sub-obsolete; habitat lakes.

Boreal portions of American Prorince. Yukon, Fraser, and Columbia Sjstems.

Cornfocyclas Tremperi, n.sp. Pl. VII, Fig. 2 2.
Shell minute, globular-trigonal, beaks anterior, broad, and somewhat elevated, hinge much reluced; habitat marshy lakes. Length $1 \cdot 4$, altitude 1.3 mm . ; depth of valres 1 mm .

Mojare Srstem.
Bluff Lake Cienaga, San Bernardino Mountains, California (H. Hannibal).

Named after Dr. R. H. Tremper, the first conchologist to risit this portion of the San Bernardino Monntains.

GASTROPODA.

Superfamily LYMNOIDE E (Broderip), 1839.
The Lymnoidex, which embrace the purely aquatic inoperculate pulmonates of the North Temperate regions and the bulk of those inhabiting the more tropical portions of the world, include a number of families, all simple types, but differing fundamentally in the manner of whorling and ontogenetic stages. And the anatomy, of which much has been written, tut little is actually known that will assist in explaining the internal modifications each group has undergone, appears to have specialized along dissimilar lines. There are excellent reasons for believing that these groups, like less bizarre types in general, are of considerable antiquity. The Planorbida hard already reached their present specialization at the dawn of the Cenozoic, while a Physa, P. prisca, Waleott, was described several years ago from the Carboniferous of Nerada, a discovery which carries this genus back to rank as oue of the oldest known freshwater molluses.

Fumily LIMNXIDA, Broderip, 1839 (emended).
Shell of small or moderate size, dextral or sinistral, spire elerated, whorls rarying from appressed to inflated, imperforate to umbilicate, columellar axis rarying in different sub-families, aperture ranging from succiniform to auriculiform; animal dextral, hermaphroditic,
buccal plate with accessory lateral jaws, tentacles flat and triungular, foot quadrate; habitat aquatic or amphibious.

There are three sub-families as follows:-

> Sub-family ACELLINE, n.sub-fan.

Whorls appressed, columellar axis imperforate and twisted, produced ly a simple oblique reflection of the imner lip, aperture succiniform; hahitat deep waters of lakes.

Genus, Acella. ${ }^{1}$

Sub-fumily L'YMN.EINN, s.s.

Whorls somewhat inflated, columellar axis sub-perforate and twisted, with a more or less distinct marginal fold, aperture sub-auriculiform; habitat lakes and streams, generally in shallow waters.

Genus, Lymmere, s.s.

Sub-family

Whorls inflated, columellar axis straight and umbilicate, the marginal fold obsolete, umbilicus partially hidden by a wide, smooth, vertical expansion of the inner lip, aperture aurienliform; habitat, young stages passed in water, adults more or less amphibious in habits.

Geuns, Lymnat; sub-genus, Galba.
As with other groups treated in these pages, the old genus Lymnaa (frequently spelt Limnea) has nudergone various vicissitudes during the last generation, and several classifications have been proposed, of which that of Dall in 1905 is perhaps the best, though unnecessarily elaborate for practical purposes. The North American species, which number about a dozen, may be segregated into Acella, Haldeman, a strictly American Province group, and a very primitive one based on a single species, Lymnat, s.s., which includes the larger species of aquatic habits with a gyrate pillar, and Lymmar, sub-genus Galba, which embraces the smaller amphibions species with a reflected pillar. Other groups have recently been given generic rank, but space is too valuable to derote to their discussion; the new ones proposed will be found in their proper places in the succeeding spnonymy.

Lymnaa, s.s., and Galbe are circumboreal, and oceur extensively in the fossil state. Lymmaa ranges from the Mesozoic to the present, while Galba is first known from the older 'lertiary. Plewolimnea, Meek, based on a Laramie and Eocene fossil, L. temicosta, M. \& H., from the Rocky Mountain region, has gone the rounds of the literature unquestioned as a member of this family. Its striking resemblance to Zaptychius, Walcott, of the Nevada Carboniferous, and Tortacella, White, of the Utah Cretaccous, whieh together form a peculiar group of Auriculoid pulmonates, apparently extinet, suggests that its columellar characters should be carefully examined with a riew of redetermining its family position.

[^12]Genus Lyanees, Lamarck.
Helix (sp.), Limné, 1758 (II. stagnalis, L.) ; Lymnæa, Lamarck, 1799 (II. stugnalis, L.) ; Limneus, Draparnaud, 1801 (emended form); Lymmus, Montfort, 1810 (emended form); Radix, Montfort, 1810 (II. auriculariu, I..) ; Limnaa, Desmarest, 1812 (emended form), non Poli, 1795, polynomial ; Lymnens, Brairl, 1815 (emended form) ; Lymmans, Cuvicr, 1817 (emended form); Lymmula, Rafinesque, 1819 (emended form) ; Auricularia, Fabricins, 1823 (nude name) ; Lymnea, Risso, 1826 (emended form), not Lymnea, Ratinesque, 1815; Limnea, Fleming, 1828 (emended form); Stagnicola, 'Leach Ms.,' Jeffrers, 1830 (S. commmis, Leach IIS. = Buccimum palustre, Müll.), in synonymy; Gulnaria, 'Leach MS.,' 'Turton, 1831 (II. auricularia, L.), in synonymy; Leachia, Jeffreys, 1833 (II. stagnalis, L.), not Leachia, Lesuemr, 1821, nor Risso, 1829; Limnophysa, Fitzinger, 1833 (B. palustre. Miill.); Bulinnea, Hahdeman, 1841 (L. megasoma, Say); Neritostoma, 'Klein,' H. \& A. Adams, 1855 (II. awricularia, L.) ; Auriculu, 'Klein,' H. \& A. Arlams, 1858 (II. stagnalis, L.) ; Eulimnens, Sandberger, 1875 (II. stagnalis, L.) ; Polyrhytis, Meek, 1876 (Limnea Kingi, Meek = II. Awricularia, L.); Pseudosucciner, F. C. Baker, 1908 (L. columella, Say).

Type, Melix stagnalis, Linné.

Sub-genus Galba (Shrank).

Buccinum (sp.), Müller, 1773 (13. truncatulum, Müll.); Galba, Shrank, 1808 (B. truncatulum, Müll.) ; Leptolimnea, Swainson, 1840 (Limneus elongatus, Drap. $=$ Buccinum glabrum, Müll.); Leptolimnans, Sandberger, 1875 (emended form); Fossariu, Westerlund, 1885 (B. truncatulum, Müll.) ; Simpsonie, F.C. Baker, 1911 (L. humilis, Say = B. truncatulum, Müll.).
Type, Buccimu truncatulum, Müller.
Sub-genus Lymnaa, s.s. Shell of moderate size, areraging 2.5 mm . in altitude, dextral, whorls normally sub-appressed or moderately inflated, sub-perforate, aperture succiniform or sub-auriculiform, axis simply reflexed in adolescent stage, with a rudimentary, well-dereloped, or sub-obsolete marginal fold in adult; habitat aquatic, chiefy in shallower portions of lakes and in sluggish streams, but not entirely confined to such situations.

Sub-genus Gulba. Shell similar to preceding, but small, areraging 10 mm . in altitude, umbilicate, whorls usually well inflated, axis simply reflexed in early adolescence, with a gyrate marginal fold in later development (Lymnaa stage), adult with a smooth vertical expansion of the inner lip reflected over the umbilicus; habitat, the foung in aquatic situations, the adults in springs, or more generally in moist places with Succinea, particularly on tangles of algæ.

The Lymnæas are characteristically of videspread occurrence. Of the species found west of the Rocky Momntains, fomr, L. stagnatis, L. palustris, L. auricularia, and L. (Galba) truncutula, are circumboreal, all of the remainder, except the newly characterized L. Cooperi, occur
in the American Province, while of the species in the latter region but four are absent from the area under consideration. This extent of distribution is withont doubt dependent upon the adaptability of the speeies to a variety of surroundings. L. C'ooperi and L. truncatula may be noted as examples; the former is practically confined to mountain streans, and unknown except in the Coast langes and adjacent valleys between San Francisco and Point Conception, California. L. truncatude, on the other hamd, oceurs in a wide variety of situations, marshy borders of lakes, moist banks of streams, and even such artificial situations as greenhouses; it is unquestionably the most extensively distributed member of the family.

Owing to the chaotic condition of the species of this genus in recent literature, it has been considered wise to include a brief account of each of the valid reecnt American Province forms. Only a few more prominent synonyms are mentioned, and no attempt is made to note the numerons mistaken ilentifications resulting from certain 'New Sehool' writers using utterly worthless characters in specific discrimination. In case of donbt Binner's Land and Fresh-water Shells of North America may usually be taken as a guide in determining the particular species the writer refers to.

Lymea stagralis (Linné).

Melix stagnalis, Linné, 1758 ; Lymneus appressus, Say, 1821 ; Limnaus speciosus, Ziegler in Rossmässler, 1835 ; Limmaa 'juguluris, Say', Haldeman, 1811 ; L. lepidu, Gould, 1847 (juvenile); L. stagnalis, var. occidentalis, Hempliill, 1890 (syntonic form) ; L. stagnalis Sanctamarice, Walker, 1892 (syntonic form) ; L. stagnalis, var. Migleyi, F. C. Baker, 1905 (syntonic form) ; L. stagnalis, var. perampla, Walker, 1908 (s5ntonic form) ; L. stagnalis Lillianc, F. C. Baker, 1910 ; L. stagnalis Wasatchensis, 'Hemphill MS.,' F. C. Baker, 1911.

Shell large, spire aemminate, whorls but slighty inflated, imperforate, aperture sub-succiniform, columellar fold pronounced; habitat lakes and marshes.

Boreal and Arctic portions of Palæaretic and Nearetic Regions. Inkon, Alaska, Fraser, Columbia, Utah, Colorado (locally), Nerada, Klamath, and Coast Range (locally) Systems.

Quaternary: Loess of eastern States; Lahontan Lake beds, Nerada; Bonneville Lake beds, Utalı; post-Glacial deposits of Vanconver Islind.

> Lymame acricularta (Linné).

Melix awricularia, Linné, 1758 (syntonic form) ; Buccinum peregrum, Miiller, 1774; Lymnca catascopinm, Say, 1817 ; Lymneus emarginatus, Say, 1821 (syntonic form); I. pinguis, אar, 1825 (syntonic form) ; Limmaa pallidu, Adams, 1840 ; L. decollatu, Mighels, 1841 srntonic form) ; L. ampla, Mighels, 1843 (syutonic form), not Giulnaria ampla, Hartm., likewise = aurioularia, L. ; Limnaus Ontariensis, 'Muhlfeldt MS.,' Küster in Chemnitz, 1862 (syntonic form) ; Limnaa Sumassi, Baird, 1863 (partim, front view);
L. Mighelsi, Biuney, 1865 ; L. Binneyi, Tryon, 1865 ; L. angulata, sowerby, 1872 (syntonic form) ; L. Canadensis, Sowerby, 1872 ; L. (Polyrhytis) Fingi, Meek, 1877 (syntonic form); ${ }^{1}$ L. scalaris, Westerlund, 1883 (srntonic form) ; Limnophysa Bonnevillensis, Call, 1884 (syntonic form) ; Radix ample, var. Utahensis, Call, 1884 (syntonic form) ; Limnca ovata, var. Atkaensis, Dall, 1884 (nude name); Limucus Atkinensis, 'Dall,' Clessin, 1886 (syntonie form) ; Limma Woodruffi, F. C. Baker, 1901 ; L. emarginata, var. montana, Elrod, 1902 (srntonie form); L. Randolphi, F. C. Baker, 1904 (syntonic form) ; L. decollata Onoroensis, F. C. Baker, 1904 (syntonic form) ; L. (Bimeyi, var. ?) Preblei, Dall, 1905 (syntonic form) ; L. Petersi, Dall, 1905 (syatonic form); L. Nasoni, F. C. Baker, 1906 (syntonic form) ; L. Minkleyi, F'. C. Baker, 1906 (syntonic form) ; L. Jacksonensis, F. C. Baker, 1907 (syntonic form) ; L. pseulopinguis, F. C. Baker, 1907 (syntonic form); L. Davisi, Walker, 1908 (syntonic form) ; L. Pilsbryana, Walker, 1909 (syntonic form) ; L. emarginata Wisconsinensis, F. C. laker', 1910 (syntonic form); Galba catascopium Adamsi, F. C. Baker, 1911; G.Alaskensis, F. C. Baker, 1911 (syntonic form) ; G. catascopium Niagraensis, F. C. Baker, 1911 ; G. 'apicina, Lea', F. C. Baker, 1911; G.'apicina solidla, Lea', F. C. Baker, 1911.
Shell normally ${ }^{2}$ of moderate size, spire broadly elevated, whorls moderately inflated, sub-perforate, aperture auriculiform, columellar fold inelined to partial obsolescence; habitat lakes and sluggish streams.

Boreal portions of Palæarctic and Nearctic Regions. Yukon, Alaska, Fraser, Columbia (locally-headwaters adjacent to upper Missouri Basin only), and Utah Systems.

Quaternary: Loess of eastern States; Bonneville Lake beds, Utah.

Lymnat palustris (Müller).

Buccimm palustre, Mïller, 1774 ; Lymnens clodes, Say, 1821 (syntonic form) ; L. desidiosus, Say, 1821 (syntonic form); Limneus umbrosus, Say, 1832; Limnea expansa, Haldeman, 1840 ; L. Nuttalliana, Lea, 1841; L. Tahli, Beek, in Möller, 1842; L. Pingelei, Beck, in Möller, 1842 ; L. fragilis, Haldeman, 1842, not Helix fragilis, L. = L. stagnulis, L. ; L. proxima, Lea, 1856 (syntonic form); L. 'pallida, Adams', Lea, 1856; Limnaa Maydeni, Lea, 1856 (syntonic form); L. Sumassi, Bairl, 1863 (except front riew) ; L. Traski, Tryon, 1863 (syntonic form); L. 'reflexa, Say', Tryon, 1863 (syntonie form) ; L. Trasti, Lei, 1864 (not of Tryon, 1863, likewise $=$ L. palustris, Müll.); L. arctica, Lea, 1864; L. Rowelli, 'lryon, 1865 (syntonie form);

[^13]L. Tryonii, Lea, in Trryon, 1865 ; L. Tryoniana, Lea, 1866 ; L. (Limnophysa) Shurtleffi, Tryon, 1866 (syntonic form); L. contracta, Currier, 1872 (syntonic form); L. Californica, Sowerbr, 1872 (syntonic form) ; L. interstriata, Sowerby, 1872 (syntonic form) ; L. palustris, var. septentrionalis, 'Clessin MS.,' Kobelt, 1880; Leptolimnaa 'Kirtlandiana, Lea', Keep, 1888 (syntonic form); Limnca palustris Michiganensis, Walker, 1892 (syntonic form); L. reflexa Jolictensis, F. C. Baker, 1901 (syntonic form) ; L. Leai, F. C. Baker, 1907 (syntonic form) ; L. Danielsi, F. C. Baker, 1907 (syntonic form) ; Galba palustris Alpenensis, F. C. Baker, 1911 (syntonic form) ; G. palustris Blachleyi, F. C. Baker, 1911 (syntonic form); G. ncopalustris, F. C. Baker, 1911 (syntonie form).
Shell of moderate size, spire well elevated, whorls moderately inflated, sub-perforate, aperture somewhat narrowly auriculiform, columellar fold well developed ; habitat lakes, marshes, and sluggish streams.

Boreal portions of Pallearctic and Nearctic Regions. Entire Californian Province except Los Angeles and Arizona Srstems.

Quaternary: Loess of eastern States; Lahontan Lake beds, Nevada ; Bonneville Lake beds, Utah; post-Glacial deposits of Vancouver and San Juan Islands.

Lfmnet coldmella, Say.

Lymnaa columella, Say, 1817 ; Limnaa chalybea, Gould, 1840 ; L. casta, Lea, 1841; L. Francisca, Poey, 1858; L. columella, var. Championi, von Martens, 1899.
Shell rather small for group, fragile, spire somewhat elevated, whorls but little inflated, imperforate, aperture sub-succiniform, columellar fold incipiently developed; habitat quiet waters.

St. Lawrence Basin and Hudson Bay drainage south to Florida and Texas (but absent from Great Plains and east slope of Rocky Mountains), American Province; Gulf of Mexico and Pacific drainages south to Panama, Mexican l'rovince; Antillean Province.

Quaternary: Loess of eastern States.
A primitive species. A rather rudimentary columellar fold is developed, while more or less of the succiniform build of the ancestral Acelinæ is still retained.

Limneea reflexa (Say).

Lymneus reflexus, Say, 1821; L. exilis, Lea, 1837; L. Kirtlandiana, Lea, 1841; Limnca lanceata, Gould, 1848; L. reffexa scalaris, Walker, 1892, not L. scalaris, Braun, 1853; L. reflexa Walkeri, F. C. Baker, 1902 ; L. reflexa Hemphilliana, F. C. Baker, 1904.

Shell of moderate size, solid, spire attenuate, whorls but little inflated, imperforate, aperture succiniform, columellar fold imperfectly developed; habitat lakes and sluggish streams.

St. Lawrence drainage and Mississippi Basin above junction of Ohio and Mississippi Rivers, American Prorince.

Quaternary: Loess of eastern States.

Likewise a decidedly primitive species; the differential character between these two and L. stagnalis is, however, rather one of degree than any tangible distinction.

> Lymiea megasoma (Say).

Lymneus megasomus, Say, 1824.
Shell rery large, solid, bulimuliform, spire elevated, whorls inflated, imperforate, aperture sub-anriculiform, columellar fold well developed or sub-obsolete ; habitat lakes and sluggish streams.

Hudson Bay and St. Lawrence drainages, American Prorince.
A fine large species, which at first glance would hardly seem referable to the same genus as Lymmeus stagnalis, but connected with it by L. palustris and similar forms ; in essential particulars it is a true Lymnca. The colouring is unusually pronounced, but L. reflexa, likewise a heavy-shelled species, presents much of the same thing.

Limnea Contracosta, J. G. Cooper.
Limnea Contracosta, J. G. Cooper, 1894.
Shell of moderate size, spire acutely elevated, whorls elongate, rather appressed, and imperforate, aperture succiniform, columellar fold well developed; habitat apparently lacustrine.

Miocenc: Contra Costa Lake beds, California; Mascall Lake beds, Oregon.

A species suggesting L. columella, but more attenuate, and nearly twice the size, whorls long as in L. megasoma. The type was badly crushed, hence the original figure does not portray the specific characters well. The species is not uncommon in the Miocene of the Berkeley Hills, however, so that its recognition is comparatively simple.

Lymnea Stearnsi, Hannibal.

Limnaa maxima, Stearns, 1902 (nude name), 1906, figure, not L. stagnalis var. maxima, Collins, 1872 ; L. Stearnsi, Hannibal in F. C. Baker, 1911 (copy of original fig. of maxima, Stearns).
Shell large, spire elevated, whorls inflated and imperforate, aperture sub-auriculiform, columella strongly folded; habitat apparently lacustrine.

Miocene : Mascall Lake beds, Oregon.
A species of the build of L. palustris, but decidedly larger and proportionally broader. Stearns' figure is nearly half as large again as the natural size and rather crude.

Lfmexa Cooperi, n.sp. Pl. VI, Figs. 13a-c.

Limnea 'obrussa, Say', 'Tryon, 1865 (partim); L. 'lepida, Goull', Carlton, 1870 ; Limnophysa 'ferruginea, Haldeman', J. G. Cooper', 1870 ; L. 'obrussa, Say', J. G. Cooper, 1872 (paitim); Limuaa 'obrussa, Say (desidiosa, Say)', Wood \& Raymond, 1891; L. 'obrussa, Say', Hannibal, 1910.

Shell small for group, spire acuminate, whorls rather compressed and imperforate, aperture narrowly amriculiforn, columellar fold
moderately developed; habitat chiefly mountain streams, less frequently in lakes and ditches.

Type : altitude 11, breadth 5 mm . ; altitude of aperture 6.5 , breadth of aperture 3 mm . A small specimen : altitude 7, breadth 3 mm . A large specimen: altitude 16, breadth 6 mm .

Coast Range System.
Santa Cruz Mountains, California: Spring, Wrights (type and small cotype) (H. Hannibal); Adobe Creek, near California Camino Real (large cotrpe) (H. Hamnibal, H. M. Edson); creek at Congress Springs (H. M. Edson) ; San Andreas Reserroir (H. Hannibal); Crystal Springs Reservoir (H. Hannibal); Matedero Creek, near California Camino Real (H. Hanmbal, H. M. Edson); Lagunita, Stanford University (Dr. J. P. Smith, R. E. Snodgrass, H. Hamibal, H. M. Edson, S. S. Berry fide Berry MS.) ; San Francisquito Creek, Stinford University (H. Hamibal, H. Mr. Edson, S. S. Berry fide Berry MS.) ; San Franciseo (W. Wood), fide Wood \& Raymond!; Allanbee Gulch, Portola Valley (H. M. Edson, H. Hannibal); water-trough, Bonlder (H. Hannibal); Stone Water-trough Gulch between Boulder and Ben Lomond (H. Hanibal) ; creeks near Santa Cruz (J. G. Cooper), fide Cooper.

Santa Clara Valley: near San Jose (H. Hemphill), fide Cooper; near Santa Clara (Miss A. E. Laws); Cottle-Nalavous Slough, Artesian Belt (H. Hamnibal).

Diablo Range: San Miguel Cañon (Miss A. E. Lavs); Tienan's bog, Hall Valley (H. Hannibal); near Oakland, fide Tryon.
Gavilan Range: Bird Cañon at forks, 8 miles west of Hollister (H. Hannibal); Tres Pinos Creek, 2 miles south of Tres Pinos (H. Hannibal).

San Joaquin Valley : irrigating ditches near Freseo (C. E. Jenney); slough 8 miles west of Antioch (Miss Ward), fide Carlton!

This little Lymnea, abundant in the mountain streams of middle Western California, from its inconspicuous size and general similarity to L. (Galba) obrussa, a species not known to occur within 200 miles, has commonly masqueraded under one or another of the names applied to that species. On careful inspection it may be distinguished by the compressed nearly shouldered whorls, narrower aperture, and entirely different thin gyrate pillar. Carlton's reference of this species to L. lepida, Gould, is interesting on account of the general similarity of Cooperi to stagnalis at one-fourth scale. The writer takes pleasure in perpetuating the name of the late Dr. J. G. Cooper, who, during the last generation, dil more than any other writer to make known the freshwater shells of Western North America.

> Lyminea (Galba) truncatula (Müller).

Buccinum truncatulum, Müller, 177.; Lymneus humilis, Say, 1822; L. modicellus, Say, 1825; Limnca umbilicata, C. B. Adams, 1840 ; L. parva, Lea, 1841 ; L. Griffithiana, Lea, 1841; L. curta, Lea, $18+1$; L. rustica, Lea, $18+1$; L. cxigua, Lea, 1841; L. Holbolli, Beck in Mörch, 1857; L. (Leptolimnea) Pilsbryi, Hemphill, 1890 (syntonie form); L. 'desidiosa, Say', Dall, 1897; L. Storkiii,
F. C. Baker, 1905 ; L. Owascaensis, F. C. Baker, 1905 ; L. Dalli, F. C. Baker, 1906 ; L. Alamosensis, Arnold, 1907 ; L.cyclostoma, Walker, 1908 ; Galba Doddsi, F. C. Baker, 1911; G. bulimoides (partim), F. C. Baker, 1911.
Shell of small or moderate size for group, spire elevated or acuminate, whorls well inflated and umbilicate, aperture roundly auriculiform, pillar showing no trace of columellar fold, the reflection of the inner lip broad; habitat generally in marshy situations about lakes or streams, also in mountain brooks and springs, frequently in greenhouses.

Entire Palæarctic and Nearctic Regions, extending south into monntainous portions of Mexican Province.

Quaternary: Loess of eastern States; Lahontan Lake beds, Nevada; calcareous spring deposit, Los Alamos Valley, and alluvial deposits of Sin Soaquin Valley, California. Miocene: Contra Costa Lake beds, California.
Lymeta (Galba) obressa (Say).

Lymneus obrussus, Say, 1825 ; L. galbamus, Say, 1825 ; L. plica, Lea, 1841; L. exigua, Lea, 1841; L. Philadelphica, Lea, 1841 ; L. planulata, Lea, 1841; Limnca ferruginea, Haldeman, 1841; L. acuta, Haldeman, 1842 ; L. desidiosa (partim), Haldeman, 1842 ; L. desidiosa, var. Decampi, Streng, 1896 ; L. 'Adelina, Tryon', Pilsbry, 1898 ; L. truncatula, Dall, 1905 (partim) ; L. desidiosa, var. peninsula, Walker, 1908.
Shell of moderate size, spire elevated or acnminate, whorls somewhat inflated, sub-perforate, aperture narrowly auriculiform, columellar fold nearly or entirely obsolete; habitat streams and lakes on floating algæ or along shore, generally but partially immersed, mountain brooks.

Boreal portions of Nearctic Region extending sonth to Colorado in Rocky Monntains. Columbia, Utah, and Klamath Systems.

Quaternary: Loess of eastern States; Bonneville Lake beds, Utah.
Reported from Mexico; the recorl will doubtless prove to have been founded on the preceding species. As with solida and the European glabra, this Lymnæid is barely beyond the Lymnaa stage and hardly a typical Galba.

Lymefa (Galba) caperata (Say).

Lymmeus caperatus, Say, 1829 ; L. Smithsoniana, Lea, 1866 ; Limnau Ferrissi, F. C. Baker, 1902 ; L. umbilicata, Cubensis, Pingelei, and opacina (error for apicina) of authors.
Shell of moderate or large size for group, spire bluntly acuminate or sub-pupiform, whorls inflated, marked by spiral fringes of epidermis, and umbilicate, aperture roundly auriculiform, pillar with an obsolete colnmellar fold; habitat moist places in the vicinity of lakes and sloughs.

Boreal portion of American Province.
Frequently reported from portions of the Californian Province. The records, so far as they have been verified, have proved to have
been based on solida, solida Cubensis, and truncatula. On the other hand caperata is frequently identified as one or another of these species. Altogether it is a very badly misunderstood Lymmaa.

> Limefa (Galba) solida (Lea).

Limnca solida, Lea, 1838 ; L. apicina, Lea, 1838; L. bulimoides, Lea, 1811; L. Adelince, Tryon, 1863; L. 'ampla, Mighels', Keep, 1888 (syntonic form) ; L. (Stagnicola?) perpolita, Dall, 1905 (syntonic form); L. bulimoides Sonomaensis, 'Hemphill MS.,' lilsbry \& Ferriss, 1906 (syntonic form); L. Hendersoni, F. C. 13aker; 1909 ; L. Cubensis Sanctijosephi, Hamibal, 1910 (syntonic form); Galba 'caperata, Say', F. C. Baker, 1911 (partim).

Limena (Galba) solida Cubensis (Pfeiffer).

Limnca Cubensis, Pfeiffer, 1839; L. 'caperata, Say', Tryon, 1863; L. Lecontei, Lea, 1864; L. techella, Haldeman, 1868 ; L. 'humilis, Say', Keep, 1888 ; L. Bryanti, F. C. Baker, 1905 ; L. Cubensis aspirans, P'ilstry, 1910 ; Galba bulimoides Cassi, F. C. Baker, 1911; G. 'Galbana, Say', F. C. Baker, 1911 (partim).

Lymnea solida. Shell of moderate size for group, horny, spire bluntly elevated, whorls inflated, sub-perforate, aperture broadly auriculiform, columellar fold sub-obsolete or (usually) obsolete : habitat lakes and sluggish streams, commonly on floating algæ.

Missouri Basin in American Province. Yukon, Alaska, Fraser, Columbia, Utah, Colorado, Nerada, Klamath, and Coast Range Systems, rarely farther south.

Quaternary : Lahontan Lake beds, Nevada; Christmas Lake beds, Oregon.

Lymnca solida Cubensis. Shell as in preceding, but porcellanous rather than horns, whorls more inflated, more deeply sutured, and more pronomeediy umbilicate, pillar showing no trace of columellar fold in adult; solida stage passed during adoleseence; habitat with Succinea in moist places, particularly marshes and about the borders of lakes and sluggish streams.

Antillean and Mexican Provinces. Gulf region, and northward to Colorado, west of the Mississippi River in American Prorince. Arizona, Los Angeles, Mojave, Coast Range, Klamath, Nevada, Utah, and Colorado Systems, infrequently farther to north grading into typical solida.

The status of these sub-species has not gained general acceptance since the appearance of the new edition of West Coast Shells, in which the writer first pointel out their relationships, due to the extremely involved condition of the nomenclature. while recent work by other writers has hindered rather than assisted in simplifring matters. Lymnca solida, lea, in violation of the law of prionity and common-sense as well, has been treated as a sub-species [sic!] of L. apicinu, a synonym according to every writer in fifty rears since it was described some months later from the identical locality, and may be distinguished only by a slightly greater elecation of the spire, and the latter identified with a dwarfed syntonic form of L. auricularia
from the Rocky Mountains and Michigan. The original specimens of solida and apicina came from the present site of Portland, Oregon, or thereabouts, sereral hundred miles from the nearest point from which auricularia has been recorded. According to the figures and original description the types of these two resemble the forms of auricularia only superficially, but agree closely with the Lymnaca, later called by Lea L. bulimoides, under which name this species has been more commonly known.

Not subsequently recognized:
Limnaa bombycina, 'Lunge,' Wood and Raymond, 1891 (nude name). San Francisco County, California.

Family ANCYLIDA, H. \& A. Adams, 1855.

Shell of small size, patelliform, crepiduliform, or planorbiform, sinistral or dextral, apex of patelliform genera elevated, medial or posterior, and generally more or less inclined to right or left, spire of planorbiform genera more or less planulate, aperture normally simple; animal sinistral, hermaphroditic, tentacles stoutly triangular, buccal plate with accessory lateral jaws, foot large and oval; habitat lakes and streams.

Four sub-families as follows:-

$$
\text { Sub-family L.EVAPECIN } \mathbb{Æ} \text {, n.sub-fam. }
$$

Shell usually large for family, depressed - patelliform; habitat chiefly lacustrine.

Genera: Larapex, Fisherola, Lanx sub-gen. Walkerola.

Sub-family ANCYLIN E , s.s.

Shell small or of moderate size, elerated-patelliform; habitat lacustrine and fluviatile.

Genera: Ancylus, Zalophancylus, Lanx s.s., Larapex sub-gen. Ferrissia, Gundlachia sub-gen. ITincaidilla.

Sub-family LATIIN E, n.sub-fam.

Shell small or minute, crepiduliform ; habitat chiefly fluriatile.
Genera: Latia, Gundlachia s.s., Neoplanorbis sub-gen. Amphigyra.
Sub-family NEOPLANORBINA, n.sub-fam.
Shell minute, planorbiform ; habitat fluriatile.
Genus, Neoplanorbis, s.s.
The genera and species of this family are characterized by their very limited distribution in contrast to nearly all the other aquatic Pulmonata. This, with the simple form and the fact that the distinctive characters lie chiefly in the ontline, microscopic sculpture, and position of the apex, has led to a lumping in the genus Ancylus of a wide variety of species whose resemblances are due rather to parallel specialization than close affinities.

Gemus Gundlaciia, Pfeiffer.
Gundlachia, Pfeiffer, 1850 (G. ancyliformis, Pfr.); Poeyia, Bourguignat, 1862 (P. gundlachoides, Bourg.). ${ }^{1}$
Type, Gundlachia ancyliformis, Pfeiffer.
Sub-genus Kincaidilia, n.sub-gen.
Type, Ancylus fragilis, Tryon. Aucylus (sp.), Tryon, 1863 (A. fragilis, Tryon).

Named after Professor Trevor Kincaid, who has kindly examined this manuscript.

Sub-genus hincaidilla. Shell small, averaging 3 mm . in diameter, patelliform, ligh-arched, narrowly orate-elliptical in outline, finely radially and concentrically striate, apex prominent, decidedly subdextral, distinetly posterior, and marked by fine concentric and sub-spirally radial striæ ; habitat lakes and streams.

Sub-genus Gundlachia, s.s. Shell of small size, areraging 2 or 3 mm . in diameter, growth during first year as in Fincaidilla; as animal nears adult condition, howerer, a septum develops, cutting off the posterior half of aperture, succeeding growth erepiduliform; habitat chiefly streams.

Gundlachia, s.s., needs no introduction, since the group has been a matter of discussion for some years, and it only need be noted that several species from New Zealand, Trinidad, ete., referred here, when the apical sculpture and other characters are studied will almost certainly be found to belong to distinct genera which have reached this same stage of specialization. Rincaidilla is instituted to receive certain Nearetic Gundlachias heretofore confused with the Ferrissias, from which they differ in the narrowly elliptical outline and high strongly inclined apex. None of the Ferrissias are known to develop a septum either regularly or infrequently, but it is, apparently, oceasionally present in all the Kincaidillas. From septate specimens of G. fragilis it appears that this may be due to syntonic influence, at least in certain cases.

Gundlachia (Kincaidilla) fragilis (Tryon).

Ancylus fragilis, Tryon, 1863; Gundlachia Californica, Rowell, 1863 (syntonic form); A.'patelloides, Lea', J. G. Cooper, 1872.
Shell minute, clongate, highly arehed, apex prominent, decidedly posterior and inclined; habitat streams and (less frequently) ponds, on sticks and submerged regetation.

Coast Range System.

Genus Lanx, Clessin.

Ancylus (Telletea) (sp.), Haldeman, 1844 (A. (I.) Nuttalli, Hald.); Lanx, Clessin, 1890 (A. Newherryi, Lea = A. patelloides, Lea). T'ype, Aucylus patelloides, Lea.

[^14]Sub-genus Walkerola, n.sub-gen.

Type, Lanx Klamathensis, n.sp.

Named after Mr. Bryant Walker, whose papers on the American Ancyli have been of much service in working up the Californian forms.

Sub-genus Walkerola. Shell large, averaging 12 mm . in diameter, patelliform, orate-elliptical in outline, low-arched, coarsely concentrically striate, frequently marked internally by an intermittent radiating white-colour pattern, apex medial, posterior scarcely prominent, smooth or marked by concentric striæ; habitat chiefly lacustro-fluviatile, on rocks and the shells of Naiades.

Sub-genus Lanx, s.s. Shell similar to preceding, but decidedly arched and broadly ovate, apex more nearly medial and sub-conspicuous; Walkerola stage completed fairly early during adolescence; habitat rapid streams, on rocks and other solid objects.

Lanx (Walierola) Klamatiensis, 11.sp. Pl. Vili, Fig. 25.

Ancylus Newberryi of authors, not of Lea.

Shell of moderate or large size, fragile, orate-elliptical, laterally compressel, low-arehed, apex sub-central ; habitat lakes and sluggish streams on solid objects.

Type: max. diam. 11, min. diam. $7 \cdot 5$, alt. 3 mm . Cotype: max. diam. 16 , min. diam. $9 \cdot 5$, alt. $3 \cdot 5 \mathrm{~mm}$.

Klamath System in basin of Klamath River, Oregon.
Quaternary: Summer Lake beds, Oregon.
Klamath Valley, Oregon: Govermment Irrigation Dam, Upper Klamath Lake (types) (E. Applegate, H. Hannibal) ; Upper Klamath Lake (F. M. Anderson) ; Link River Rapids, Klamath Falls (E. Applegate, H. Hannibal) ${ }^{1}$; Klamath River, Keno (H. Hannibal); (Quaternary) Summer Lake (F. M. Anderson).
This large low-arched Lanx is doubtless present in various collections under the name of Ancylus Newberryi, Lea, which was described from (Upper) Klamath Lake. A study of Lea's diagnosis and figure and that given by Binney make it certain that Newberrs, who eollected the specimens, really obtained them from one of the streams flowing south from Mount Shasta in California, since they are unquestionably merely finely developed dark-colonred Lanx pateiloides, and rery distinct from the present species.

Lavx Nuttalli (Haldeman).

Ancylus (Velletea) Nuttalli, Haldeman, 1841; A. crassus, Haldeman. 1843; A. Kooteniensis, Baird, 1865; A.'subrotundatus, Tryon', Keep, 1888.
Shell small, solid, roundly orate, slightly broader posteriorly, high-arched, apex posterior; habitat streams.

Columbia System in Columbia River and tributaries.

[^15]
Laxy pathlombs (Lea).

Ancylus patelloides, Lea, 18.5b; A. Newboryi, Lea, 1858; A. allus, Tryon, 1865.
Shell large, sub-solid, broadly ovate-elliptieal, broader posteriorly, moderately regularly conical, apex sub-central; habitat on rocks in streams.

Klamath System in streams draining into Sacremento River.
Lanx subrotundatus (Tryon).
Ancylus subrotumatus, 'Tryon, 1865 ; A. patelloides and A. Newberrys of authors, not of Lea.
Shell large, sub-solid, roundly orate in outline, slightly broader posteriorly, moderately arched, the anterior and posterior slopes gently romded, apex sub-posterior; habitat streams.

Columbia System in Umpqua liver and tributaries.
Very similar to patelloides, but less regularly conical, and the apex distinctly posterior.

Gemus Levarex (Walker).
Lerapex, Walker, 1903 (A. fuscus, C. B. Ad.).
Type, Ancylus fuscus, C. B. Adams.
Sub-genus Ferrissia, Walker.
Ancylus (sp.), Say, 1819 (A. rivularis, Say); ? Maldemania, Clessin, 1888 (A. ob̈scurus, Hald.), not Maldemaniu, 'Tryon, 1862; Ferrissia, Walker, 1903 (A. ricularis, Say).
Trpe, Ancylus rivularis, Sar.
Sub-geuus Larapex, s.s. Shell of moderate size for group averaging 8 mm . in dianeter, patelliform, low-arched, broally orate-elliptical in outline, finely radially and concentrically striate, apex sub-dextral, barely posterior, not prominent, and marked only by concentric strie; habitat chiefly lacustrine.

Sub-genus Ferissia. Shell similar to preceding, but of smaller size, areraging 5 mm . in diometer, patelliform, ovate-elliptical in outline, arched, finely radially and eoncentrically striate, apex hardly prominent, sub-posterior, and marked by fine concentric and subspiralls radial strix ; Larapex stage completed during earls adolescence ; habitat chiefly streams, less frequently in lakes and ponds.

Letapex (Ferrissia) caumines (W. Cooper).

Aucylus caurinus, W. Cooper, 1860 (nude name), in Binney, 1865 , figure ; A. 'fragifis, 'Tryou', 'Tryon, 1872; A. 'patelloides, Lea', J. (i. Cooper, 1872 ; A. Oregonensis, Clessin, 1881 ; A. caurinus subalpinus, J. G. Cooper, 1892 ; A. rivularis of anthors, not of sar ; not A. 'caurinus, Coop.', J. Henderson, $1907=$ L. ricularis.
Shell of moderate size, somewhat elongate, arched, apex subposterior, not prominent ; habitat streams and ponds on submerged regetation.

Fraser, Columbia, Utah, Nerada, and Klamath Srstems.

Levapex (Fermissia) undclates (Meek).

Ancylus undulatus, Meek, 1877.
Shell large, arehed, apex posterior, slightly inelined, sub-prominent; habitat apparently lacustrine.

Eocene: Truckee Lake beds, Nevada.
The intermal casts, of which all the specimens seen consist, retain no trace of the sculpture, hence it is difficult to make certain the generic position of this species. Aside from the large size it groups very well with Ferrissin, but it is quite unlike the other Aucyline in the position of the apex.

Gemus Neoplavombs, Pilsbry.
Neoplanorbis, l'ilsbry, 1906 (N. tantillus, Pils.).
Type, Neoplanorbis tantillus, Pilsbry:

Sub-genus Ampilgyra (Pilsbry).

Amphigyra, Pilsbry, 1906 (A. Alabamensis, l'ils.).
Tรpe, Amphigyra Alabamensis, Pilsbry.
Sub-genus Amphigyra. Shell minute, crepiduliform, dextral, spire lateral, oblique, and smooth, body-whorl spirally striate, aperture large and oblique, a broad concare septum projecting across the posterior portion and reaching up into the spire, indicating an :ppearance very early in the development; habitat fluviatile.

Sub-genus Neoplanorbis, s.s. Shell very minute, planorbiform, dextral, coarsely spirally striate, more or less carinate at periphery, spire sub-planulate, aperture oblique, columellar margin straight; Amphigyra stage apparently passed early in development; habitat rapid streams.

Latia Dalli, White, 1882.
Shell large for genus, apex small, terminal, sub-spiral, and slightly oblique, aperture very large; habitat apparently lacustrine, at least in part.

Eocene : Payette Lake beds, Idaho.
This species is known to the writer only from White's original descriptions and figures. It is obriously not a Latia nor a Gundlachiu, but appears to resemble Amphigyra, and is placed here tentatively.

Genus Fisirerola, n.gen.

Type, Fisherola lancides, u.sp.
Shell of moderate size, areraging 6 mm . in diameter, rounded-orate, somewhat broader anteriorly, depresserl-conic, finely concentrically striate, apex small, indistinet; sub-terminal, but not inclined; habitat sluggish streams.

Fisherola agrees with Lanx, s.g. Wallerola, in general outline, the medial position of the apex, and the absence of radial strix, while the nucleus (shaped like a Chinese labourer's hat) is rery similar, in contrast to Ancylus, Acroloxus, or any of the Occidental genera.

No one would mistake the two, however, even at first sight, since the apex of Fisherola is more posterior than in Ancylus, while in Lanx it is rery nearly central.

Named after Dr. W. K. Fisher, whose frequent criticisms during the preparation of this paper have been much appreciated.

Fisherola lancides, n.sp. Pl. VIII, Fig. 35.

Shell small, fragile, ovate-elliptical, broader anteriorly, low-arched, concentrically striate, apex not inclined, sub-terminally posterior; habitat sluggish streams.

Type: max. diam. 6, min. diam. 3•8, alt. $1 \cdot 2 \mathrm{~mm}$. Cotype: max. diam. $5 \cdot 5$, min. diam. 4 , alt. $1 \cdot 2 \mathrm{~mm}$.

Columbia System in Snake River Basin.
Snake River, Washington (H. Hemphill).

Genus Zalophancylus, n.gen.

Tspe, Zalophancylus Morani, n.sp.
Shell of large size areraging 9 mm . in diameter, rounded-ovate, regularly elerated-conic, concentrically and apparently radially striate, apex central, large, and prominent, not inclined ; habitat apparently lacustrine.

Zalophancylus Morani, n.sp. Pl. VI, Fig. 15.

Shell of moderate size, regularly rounded orate, elevated conic, apex central and distinctly prominent; habitat apparently lacustrine.

Max. diam. 9, min. diam. 7, alt. 3.5 mm .
Pliocene: Idaho Lake beds, Oregon.
Badland Hills, one mile east of Sand Hollow, Oregon (R. B. Moran).
Named after Mr. R. B. Moran, who collected the trpe-specimens.

$$
\text { Family PLANORBIDA (H. \& A. Adams), } 1855 .
$$

Shell of minute, small, or moderate size, physiform or planorbiform, sinistral or ultra-sinistral,' sub-carinate above and below in early stages,

[^16]frequently throughout life, axially and spirally striate, aperture lunate, retracted above, commonly simple, but dentate in one of the modified groups; animal dextral, hermaphroditic, tentacles filiform, buccal plate with accessory lateral jaws, foot quadrate; habitat lakes and streams.

An examination of the early stages of the members of this family rereals the fact that the old classification into Planorbis (edentate species) and Segmentina (dentate species) has no genetic significance, since the smaller Planorbes with vertically compressed whorls and more or less acute peripherally prove to be congeneric with Planorbis (Segmentina) nitida, as suggested by Ficinus nearly fifty years ago, constituting species which have either never developed apertural teeth or in which they have been absorbed, while the large species, such as corneus, trivolvis, etc., belong to Helisoma.

Both Planorbis and IIelisoma in the primitive condition have a planulate spire and normal umbilicus, and each tends to develop an invaginate spire and planulate umbilicus to accommodate the dextral animal. So many features of unequal parallelism appear, howerer, that it has not been considered wise to attempt the recognition of stages or sub-families without the study of additional genera.

Gemus Plavorbis, Müller.

Helix (sp.), Linné, 1758 (II. planorbis, L.) ; Planorbis (pars), Müller, 1774 (P. carinatus, Müll. = H. planorbis, L., type br tantonomy); Planorbarius, Dumeril, 1806 (emended form); Anisus (pars), Studer, 1820 (P. Planorbis, L., type bs substitution); Spirorbis, Swainson, 1840 (P. vulgaris, Swains. $=$ II. vortex, L.), not Spirorbis, Daudin, 1800; Spiralina, Hartmann, 1840 (nude name); Tropidiscus, Stein, 1850 (II. complanata, L. $=$ II. planorbis, L.) ; Gyrorbis, Moquin - Tandon, 1855 (P. carinatus, Müll. = II. planorbis, L., type by substitution), not Gyrorbis, Fitzinger, 1833 ; Omalodiscus, Benson, 1855 (P. vnlgaris, Swains. $=$ II. vwrtex, L., type by substitution) ; Diplodiscus, Westerlund, 1897 (II. vortex, L.), not Diplodiscus, Diesing, 1850 ; Spiralina, 'Hartmann,' Von Martens, 1899 (II. vortex, L.) ; I'(traspira, Dall, 1905 (Planorbis rotundatus, Poir. $=H$. vortex, L.).
Type, Melix planorbis, Iinné.
from simple patelliform ancestors, the Ancylidæ illustrating how this has taken place. Assuming that then, as now, the animal in each group was dextral or sinistral as the case might be, while the shells were indiscriminately sub-sinistral or sub-dextral, a ready explanation is afforded. Once the evolution commenced toward the development of a spiral shell, the position of the apex became a matter of the utmost importance, since it determined absolutely whether the coil would be sinistral, dextral, or enveloped by succeeding whorls; consequently a sinistral or dextral, dextral or sinistral shell is superimposed upon a sinistral or dextral animal for all time. In case an unhappy combination resulted the only relief is in ultrasinistral or ultra-dextral growth to accommodate the animal. This latter phenomenon is genetically distinct and readily detected as such.

Sub-genus Segmentina (Fleming).
Segmentina, Fleming, 1817 (Planorbis nitidus, Mïll.) ; Memithalamus, 'Leach MS.,' 'Inrton, 1831 (Nautilus laeustris, Lightf. = P. vitidus, Miill.), in smonymy ; Discus, Haldeman, 1840 (P. armigera, Say), not Discus, Fitzinger, 1833 ; Planorbula, Haldeman, 1842 (P. armigera, Say) ; Dentatus, 'Beek,' Gray, 1847 (P. armatus, Gray) ; Trochorbis, Menson, 1855 (P. trochoides, lens.) ; Appendienluta, Ficimus, 1867 (P. nitidus, Müll., type by inclusion) ; Iraldemanina, Dall, 1905 (P. Wheatleyi, I.ea).
Type, Planorbis nitidus, Müller.
Sub-genus Grraulus, Agassiz.
Thutilus (sp.), Linné, 1758 (N. crista, L.) ; Turbo (sp.), Linné, 1767 (T. nautilus, L. = N. crista, L.); Planaria, Brown, 1827 (Planorbis albus, Mïll.), not Planaria, Miill., 1776 ; Gyraulus, Agassiz in Charpentier, 1837 (P. hispidus, Drap. $=P$. albus, Miill., type by later designation); Armiger, Hartmann, 1840 (N. cristu, L.) ; Troehlea, Haldeman, 1841 (P. albus, Müll., trpe by substitution) ; Nautilina (sp.), Stein, 1850 (N. crista, L.); Torquis, Dall, 1905 (P. partus, Say).
Type, Planorbis albus, Miiller.

Sub-genus Hippedtis, Agassiz.

Hippeutis, Agassiz, in Charpentier, 1837 (Planorbis complanatus, Drap. $=$ Melix fontana, Lightf.) ; Bathyomphalus, Agassiz, in Charpentier, 1837 (II. contortus, L.); Polygyrus, Gray, 1847 (II. eontortus, L.), not Polygyrus, Beek, 1837 ; Diseoidina, Stem, 1850 (1I. contortus, L.) ; Menetus (sp.), H. \& A. Adams, 1855 (Planorbis opereularis, Gould $=P$. dilatatus, Gld.) ; Helicorbis, Benson, 1855 (P. nitidus, Gras, non Miiller = M. fontana, Lightf.) ; Drepanotrema, Crosse \& Fischer, 1880 (P. Izabelensis, C. \& F.); Meterodiscus, Westerlund, 1902 (P. Libunicus, West.), not Heterodiseus, Sharp, 1886.
Type, Melix fontana, Liglitfoot.
Sub-genus Planorbis, s.s. Shell of moderate size, averaging 8 mm . in diameter, discoidal, whorls numerous and rertically compressed, sinistral, spire planulate, umbilicus broadly dished, margin of spirepit and umbilicus normally subangular, periphery carinate, aperture normal, retracted abore; habitat lakes and streams among aquatic regetation.

Sub-genus Gyraulus. Shell similar to Planorbis, s.s., but smaller, areraging 5 mm . in diameter, saucer-shaped, whorls moderate in number and vertically deeper, the periphery rounded, growth somewhat ultra-sinistral, spire broadly dished; Planorbis stage passed fairly carly during adolescence ; habitat similar to preceding.

Sub-gems Segmentina. Shell similar to preceding but nantiliform, the whorls usually not numerous and vertically deeper, spire-pit broadly funicular, umbilicus more or less depressed, aperture dentate some distance back, the tecth or plaits in two series, one on the
whorl, the other the columella; Gyraulus stage passed during early adolescence, Planorbis stage pushed back to earliest post-larval growth; habitat similar to preceding.

Sub-genus Hippentis. Shell similar to preceding but lacking the dentieulations (which have been absorbed), whorls usuall? fewer, spire-pit generally narrower and deeper, umbilicus nearly enveloped; segmentina stage apparently passed fairly early during adolescence; habitat same as preceding.

Planorbis has probably suffered worse ricissitudes than any other genus treated in these pages. Not only has it been incorrectly dirided, but the group to which the name has been restricted in recent literature belongs to another genus. Müller instituted Planorbis in 1774, ostensibly to receive the present families Planorbidæ and Physidæ. No trpe was designated, since it was not then customary, but the following species were deseribed:-

> Section *, shell depressed.

Planorbis contrarius, Müll. (Helix cormu-arietis, L., renamed) $=$ Marissa cormu-arietis (L.), South American.
P. purpura, Müll. (II. cornea, L.) $=$ Helisoma cornea (L.).
P. carinatus, Müll. (II. planorbis, L.) = P'. planorbis (L.).
P. vortex, Müll. (II. vortex, L.).
P. umbilicatus, Müll. (IF. complanatus, L.) = P. planorbis (L.).
P. spirorbis, Miill. (II. spirorbis, L.) = P. vortex (L.).
P. contortus, Müll. (H. contortus, L.).
P. nitidus, Miill.
P. albus, Müll.
P. imbricatus, Müll. (Nautilus crista, L.) $=$ P. crista (L.).
P. similis, Müll. = Melisoma cornea (L.), juvenile.

Section **, shell conical.
P. bulla, Muill. (Bulla fontinalis, L.) $=$ Physa fontinalis (L.).
P. turritus, Müll. (B. hypmorum, L.) = Physe hypnorum (L.).
P. gelatimus, Müll. = ? Physa fontinalis, L.

The second section was removed by Miiller to Bulinus the next year. Lamarek, 1799 and 1801, eites the Marissa, an Ampullaroid. the anatomy of which was then unknown, but which has since proved to be very different from that called for in Müller's diagnosis, hence it must be excluded. Swainson (1840), the Adams (1855), and Trron (1884) give the second species, Helix corneus of Linné, as an example, and Dall (190j) cites this as the trpe. If this were the sum and substance of the matter their example must be followed, and Planorbis of future usage, like Planorbis of the last seventry years, would be a very different thing from Planorbis of Müller, incluiding but two of the original fourteen species, and one of them regarded by the author as donbtfully distinct. Now seven (five, omitting synourms) of Müller's species are congeneric with II. planorbis of Linné, anid one is proposed as a substitute for it, the author merely following a current practice of the time of altering the specific name when it became necessary to place the species in a new genus. It seems perfectly
obvious that Müller regarded the smaller Planorbidæ, which formed the bulk of his genus, as the typical members, and utilized the suggestive name of an old well-established species of this group, first described some seventy years before when the binomial nomenclature had not yet come into nse, to designate it by. In other words II. planorbis is the type of Planorbis by tautonomy, and the efforts of Swainson or any other writer fifty or more sears later to transfer the name to a different group should not be toleratech. If lack of classical examples is claimed, it might be noted that in 1837 Charpentier, utilizing some of A gassiz's manuscript work, first subdivided the genus as it now stands into natural groups, correctly restricting Planorbis to the section including II. planorbis, L., and II. vortex, L.

The genus Planorbis in the sense used here embraces the so-called smaller Planorbes, and is characterized particularly by the peripheral keel in trpical Planorbis, the simple rounded succeeding stage the denticulations developed in the 'throat' of the shell in the sub-genus Segmentina, and a second 'round-whorled' stage following that. These dentienles take the form of plaits or cusps, and differ radically in each species, thus affording a ready means of identification, and incidentally several unnecessary seetional names. P. nitida, of Europe, has a transverse columellar phat and two on the whorl. The American P armigera is more complex, possessing cusps in addition to the plaits, which are in this instance diagonal. The appearance on looking into the aperture when the shell is oriented in its natural position might be diagrammatically expressed as follows :-

Planorbis albus, Müller, 1774; P. deflectus, Say, 1824; P. hirsutus, C. B. Adams, 1839 ; P. vermicularis, Gould, 1847 ; P. borealis, 'Loven MS.,' Westerlund, 1875.
Shell small, whorls rounded, fairly deep, and nsnally more or less hirsute, spire-pit narrow for gronp; habitat chiefly in lakes, preferring deep water.

Boreal portions of Palæarctic and Nearctic Regions. Yukon, Alaska, Fraser, Columbia, Klamath, and Coast Range (locally) Systems.

Quaternary : Loess of eastern States.

> Plaxorbis (Gyraulus) parves (Say).

Planorbis partus, Say, 1817 ; P.glaber, Jeffrers, 1820 ; P. levis, Alder, $1838 ; P$. tevatus, C. B. Adams, 1840 ; P. vermicularis of anthors in part, not of Gould.
Shell small, whorls compressed, spire-pit widely evenly coneare; habitat lakes and streams.

Nearctic Region; European Province.
Quateruary: Loess of eastern States; post-Glacial deposits of Vancouver and San Juan Islands; San Pedro formation (specimens washed into marine terraces), alluvial deposits of Sau Joaquin Valley, Oren Lake beds, playas of Mojave Desert, and Le Conte Lake beds, Califormia.

Planorbis (Gyraulus) Liebianyi (Dunker).

Planorbis Liebmami, Dunker in Martini \& Chemnitz, 1850; P. gracilentus, Gould, 1855.

Shell of large size, whorls fairly deep, spire-pit rather broadly concare; habitat lakes and streams.

Mexican and Antillean (?) Provinces. Arizona System (locally).
Le Conte Lake beds, California.
Probably not the earliest name for this species; the Mexican Planorbidæ are in need of careful revision.

Planorbis (Gyraulus) filocinctus (Pilsbry \& Ferriss).
Planorbis filocinctus, Pilsbry \& Ferriss, 1906.
A species of the trpe of P. albus and P. parvus, but unknown to the writer except from the original diagnosis in the Mollusca of the South Western States, part ii.

Arizona System.

Planorbis (Segmentixa) armigerds (Say).

Planorbis armigerus, Say, 1821.
Shell of moderate size, whorls fairly deep, umbilicus and spire-pit broad, the latter deep, aperture armed, the teeth corresponding to the formula

habitat sluggish streams and marshes.
American Province. Yukon System.
Planorbis (Segmentina) Mofayensis, n.sp. Pl. Vili, Fig. 27.
Shell large, nautiliform, whorls rounded, deep, not numerous, umbilicus and spire-pit broad, and nearly equal in depth, aperture armed, the denticulations corresponding to the formula

habitat probably lacustrine.
Diam. $9 \cdot 5$, alt. $4 \cdot 5$, diam. of aperture 3 mm .
Miocene: Rosamond Series, California.

Near Barstow, Mojare Desert, California (J. C. Merriam, C. L. Baker).

Resembles P. (Hippentis) contortus of Europe, somewhat in the nautiliform shape, hut deeidedly larger, and lacking the numerous whorls of that species. The absence of apertural lamellæ above the periphery on the whorl is peculiar, but characteristic of all the specimens in which this character may be made out.
Planorbis (Segmentina) declivis (Tate), 1870.
1)all (Alaska, xiii, 1905, p. 98) eites this Nicaraguan species from the Umpqua River, Oregon. In several years field-work in California and Oregon the writer has seen nothing corresponding to it, and the species does not appear on a manuscript list of the shells observed in the ricinity of Elkton on the Umpqua River by Fred H. Andrus, an old collector. Is this not another Unio Oregonensis?

> Planorbis (Hippedtis) exacutus (Say).

Planorbis exacuous (misprint for exacutus), Say, 1821; P. exacutus, 'Say ' of authors.
Shell of moderate size, whorls vertically compressed, spire-pit broad for group, umbilicus not appreciably depressed; habitat ponds and streams.

American Province. Yukon, Fraser, and Columbia (loeally) Systems.

Loess of Yukon Valley, Alaska.

> Planorbis (Hippedtis) milatates (Gould).

Planorbis lens, Lea, 1838, not of Brongniart, 1810; P. dilatatus, Gould, 1841, not of Pfeiffer, 1842; P. lenticularis, Lea, 1844, not of Schlotheim, 1818; P. Buchanensis, Lea, 1844; P. Brongniartiana, Lea, 1844 ; P. opercularis, Gould, 1817 (syntonic form); P. planulatus, W. Cooper, 1860 (syntonic form) ; ? P' 'gracilentus, Gould', Tryon, 1863; P. Centervillensis, 'Tryon, 1872; P. callioglyptus, Vanatta, 1895 (syntonic form) ; ${ }^{~} P$. opercularis, var. Oregonensis, Vanatta, 1895, not P. Oregonensis, Tryon, $1865=$ II. trivolvis, Say ; P. opercularis, var. multilineata, Vanatta, 1899 ; P. Tanclecki, Arnold, 1910 (srntonic form); P. vermicularis of authors in part, not of Gould.
Shell small or of moderate size, whorls deep, spire-pit narrow but extending to apex, umbilicus not appreciably depressed; habitat lakes and clear streams.

European and American Prorinces. Entire Californian Prorince except Los Angeles and Arizona Systems.

Quaternary: Lahontan Lake beds, Nerada; Owens Lake beds and alluvial deposits of Sau Joaquin Valler, Califoruia; Summer and Christmas Lake beds, Oregon. Plioeene: Idaho Lake beds, Oregon and Idaho; Kettleman Lake beds, California.

A common species in the Californian Province, but sporadic elsewhere if the records may be depended upon. Besides being reported under a variety of names it has donbtless been confused with the preceding speeies, which is less common west of the Rocky Mountains.
P. Samsoni, Ancey, and Alabamensis, Pils., are two of the better known synonyms, which have, however, not been used for the species in the present district.

'Planorbis (Spirorbis)' lunatus, Conrad, 1871.

Oligocene: John Day Series, Oregon.
This is not a Planorbis, as supposed by Conrad, bnt a land snail belonging to the genus Ammonitella of J. G. Cooper. Stearns, apparently maware of Conrad's name, redescribed the species in 1900 as Ammonitella Yatesi precursor. Ammonitella lunata is, however, specifically distinct from A. Yatesi, a recent species from the Sierra Nevada Mountains, Cilifornia.

Genus Helisoma, Swainson.
Helisoma, Swainson, 1840 (Plamorbis biearinatus, Sowb. = P. antrosus, Conr.) ; Taphius, H. \& A. Adams, 1855 (P. andccola, d’Orb.).
Type, Planorbis antrosus, Conrad.

Sub-genus Planorbella, Haldeman.

Helix (sp.), Linné, 1758 (II. cornea, L.) ; Planorbis (sp.), Müller, 1774 (P. purpura, Müll. = II. cornea, L.); Planorbella, Haldeman, 1812 (P. campanulatus, Say); Planorbina, Haldeman, 1842, (P. olivaceus, Lpix, cited by Dall, 1905); Coretus, 'Adanson,' (iray, 1847 (II. cornea, L.) ; Menetus, H. \& A. Adams, 1855 (for 'Anisus, Beck, not Fitz.', hence P. olivaceus, Spix); Adula, H. Adams, 1861 (P. multivolvis, Case $=P$. campanulatus, Say, syntonic form), not Adulu, H. \& A. Adams, 1851; Ancœus, H. Adams, 1869 (for Adula, H. Adams, hence same type), not Ancous, Fravel, 1863 ; Pierosoma, Dall, 1905 (P. trivolvis, Say).
T'spe, Planorbis campanulatus, Say.
Sub-genus Perrinilla, n.sub-gen.
Type, Helisoma Cordillerana, n.sp.
Named in honour of Dr. James Perrin Smith, to whom the writer is under obligations for frequent adrice, particularly pertaining to the theoretical problems, during the preparation of this paper.

Sub-genns Planorbella. Shell large, averaging 20 mm . in diameter, whorls moderately deep, sinistral, the spire planulate, tending to become excarated as the adult condition is reached, its margin sub-carinate, umbiliens narrow and deep, broadening rapidly during later development, margin subangular, aperture retracted above, expanded in adult; habitat lakes and quiet streams.

Sub-genus Helisoma, s.s. Shell similar to Planorbella, but distinctly ultra-sinistral, the spire-pit and umbilicus funicular, and nearly equal in depth, each margined by a decided peripheral carina, aperture expanded in adult; Planoibella stage passed very carly during adolescence; habitat similar to Planorbella.

Sub-genus Perrinilla. Shell similar to Planorbella, except that it is totally ultra-sinistral, spire-pit deep and narrow, umbilicus but slightly excavated, superior and inferior peripheries subangular; Helisoma stage passed rery early during adolescence, Planorbella
stage not distinguished on account of preservation ; habitat apparently similar to Planorbclla.

Nearly every well-established recent species of this genus has apparently served as the type of its own peculiar sub-genus. The present arrangement is not liable to offer particular difficulties to American conchologists, but the Planorbella group is commonly known in Europe under the name of Cortens. This was originally used by Adanson (as Coretus) in a somewhat different sense, but on its introduction into Linnean nomenclature it was transferred to the present group. Since this did not take place until after the appearance of Planorbella it must be suppressed, a procedure that the writer is not sorry for on historical grounds.

Helisoma appears to be a Mesozoic genus, which reached its culmination in the older Tertiary or earlier, and is represented in the living state chiefly by species belonging to the primitive group. Perrinilla, which wonld doubtless be termed by Grabau a 'second round-whorled stage ', appears to be an instance of over-specialization resulting in extinction.

Helisoma (Planorbella) trivolvis (Say).
Plemorbis trivolvis, Say, 1817; P. tumidus, Pfeiffer, 1839 (syntonic form) ; P. 'corpulcntus, Say', Haldeman, 1814 (syntonic form); P. 'glabratus, Say', Haldeman, 1844 (partim); P. ammon, Gould, 1855 (syntonic form); P. suberenatus, Carpenter, 1856 (senile); P. Traski, Lea, 1856 (syntonic form) ; P. tumens, Carpenter, 1857 (syntonic form) ; P. truncalus, Miles, 1861 (syntonic form); P. Horni, Tryon, 1865 (syntonic form) ; P. Oregonensis, Tryon, 1865 (syntonic form) ; P. Binneyi, 'Tryon, 1868 (syntonic form); Helisoma'tenuis, Phil.', Carlton, 1870 (srntonic form); P. occidentalis, J. G. Cooper, 1870 (syntonic form) ; II. plexala, Ingersoll, 1874 (syntonic form) ; P. (subcrenatus, vir.?) disjectus, J. G. Cooper, 1890 (syntonic form); P. 'lentus, Say', Stearns, 1893 (syntonic form) ; P. 'vermicularis, Gould', Arnold, 1903.
Shell large, coarsely striate, whorls deep, not numerous, superior margin sub-prominently carinate, forming an evenly concave spire-pit, aperture somewhat expanded in adult; habitat lakes and sluggish streams.

Entire Nearetic Region. Mexican Prorince.
Quaternary: Loess of eastern States; San Pedro Formation (specimens washed into marine terraces), alluvial deposits of San Joaquin Valley, and Le Conte Lake beds, California; Lahontan Lake beds, Nevada; Bonnerille Lake beds, Utah; post-Glacial deposits of Vancourer Island. Pliocene: Santa Clara and Cache Lake beds, California.

Hellsoma antrosa (Comrad).

Planorbis bicarinatus, Say, 1817, not of Lamarek, 1804; Melix anqulata, Rackett, 1821, not of Burrow, $1815 ; P$. antrosus, Conrad, 1834 ; P. elongatus, Conrad, 1835 ; P. bicarinatus, Sowerby, 1840, not of Lamarek, 1804; P. angistoma, Haldeman, 1844 ; P. lautus, H. Adams, 1861.

Shell rather small, finely striate, whorls deep and of moderate size, umbilicus and spire-pit prominently funicular, the former particularly so, superior and inferior peripheries pronouncedly carinate, aperture expanded in adult; habitat lakes and quiet streams.

American Province. Columbia and Fraser Systems.
Quaternary: Loess of eastern States.

Helisoma (Perrinilla) Pabloina (J. G. Cooper).

Planorbis Pabloanus, J. G. Cooper, 1894.
Shell small, coarsely striate, whorls not deep and rather small, umbilical carina nearly obsolete, sub-marginal, the umbilicus unevenly concare, spire-pit rather broad for group, aperture but slightly expanded; habitat apparently lacustrine.

Miocene: Contra Custa Lake beds, California.
A small inconspicuous species lacking the evenly dished umbilicus of Cordillerana. The type was crushed flat, and alone would harlly be sufficient to distinguish the species if still in existence. Severil fairly preserved specimens from the vicinity of the original locality permit a diagnosis, however.

Melisoma (Perrinilla) Cordillerana, n.sp. Pl. IV, Fig. 34; Pl. VI, Fig. 16.

Shell of considerable size, whorls large, somewhat compressed, and strongly ultra-sinistral, the umbilicus barely concave, superior and inferior periphories subangular in young stages, becoming rounded in adult, growth-striæ strong, spiral strix occacionalty preserved, aperture expanded somewhat in adult; habitat apparently lacustrine.

Diam. 22, alt. 9, diam. of aperture 12 mm .
Eocene: 'Truekee Lake beds, Nerada.
${ }^{n}$ Hill near Hawthorne on the Belmont stage road (types) ; near Hawthorne (probably same locality) (H. W. Turner); one mile sonth-east of coal-mine, Silver Peak lange (S. A. Knapp, H. W. Turner); $1 \frac{1}{2}$ miles south-cast of coal-mine (H. W. Turner); hill immediately back of coal-mine (H. W. Thrner); 7.7 km . nortll-east of Emigrant Gap, and 8.6 km . south-east of coal-mine, Silver Peak Range (H. W. 'timer).

Possibly co-specific with Planorbis Utahensis, Meek, from the same horizon in the Rocky Mountains. The species belongs to this group, but the figures are not characteristic and no specimens are available.

Family POMPHOLIGIDA, Dall, 1866.

Shell of small or moderate size, relutiniform or sub-planorbiform, dextral, showing fine spiral and growth striæ, aperture ovate or ovatequadrate, colnmella simple, imperforate, or umbilicate ; animal sinistral, hermaphroditic, tentacles clavate, buceal plate sub-cordiform, lateral jaws absent, foot quadrate-elliptical ; habitat lakes and clear streams.

The genus Pompholy.x, the sole known representative of this family and a strictly Cahifornian group, contains four Cenozoic species which differ rather widely in superficial appearance, and with the exception of the recently described P. Sancteclare have served as the types of

[^0]: ${ }^{1}$ Plates rii and viii will appear in the next part of the 'Proceedings'.
 ${ }^{2}$ See in this connexion Dall, l'op. Sei. Mo., lxvi, p. 362, 1905; Alaska, xiii, 1905, p. 2 ; Hannibal, in West Coast Shells, 1910, p. 229.

[^1]: ${ }^{1}$ Recent accounts of the genetic classification and its application to Mollusca may be found in J. P. Smith, Joum. Geol., r. pp. 509-24, 1897; riii, pp. 413-25, 1900 ; A. Grabau, Am. Nat., xxxri, pp. 917-45, 1902; xli, pp. 610-46, 1907.
 ${ }^{2}$ Mollusca, Cambridge Nat. Hist., vol. iii, p. 8.5, figs. 33, 34, 1895.
 ${ }^{3}$ Science, i, p. 202, 1883 ; Proc. Acad. Nat. Sci. P'hilad., p. 408, 1896.

 * Within a year one writer, evidently of limited experience in the field, has distinguished as a distinct genus an extreme distortion of the common Lymnca auricularia from this region.

[^2]: ${ }^{1}$ Gray's Turton, p. 228, 1857.

[^3]: ${ }^{1}$ It is probable since the salts are ionized in solution that the hydrochloric acid present in the salivary juices would change the sulphate to chloride before it entered the circulatory system.

[^4]: ${ }^{1}$ That this shape is really primitive is evident from the inspection of the young stages of almost any Unioid; cf. pl. v, fig. 7, or Leferre \& Curtis, Journ. Exp. Zool., ix, pl. iv, fig. 29, 1910.

[^5]: ${ }^{1}$ This definition, while very different from that ordinarily given for a subspecies (that it represents a geographic variety), in practice amounts to approximately the same thing. Sub-species either occupy a different geographic area, a different station, or a different life-zone from the type, so far as the writer's expericnce goes.

[^6]: ${ }^{1}$ See A. E. Ortmann, Nautilus, xxiii, pp. $114 \mathrm{ff} ., 139 \mathrm{ff} ., 1910$; xxiv, pp. 39 ff. , 94 ff., 1910 ; pp. 114 ff., 1911 ; xxv, pp. 5 ff., 1911 ; Mem. Carn. Mus., iv, pp. 279-347, pls. lxxxvi-ix, 1911 ; Lefevre \& Curtis, Journ. Exp. Zool., ix, pp. 79-115, pls. i-v, 1910.

[^7]: ${ }^{1}$ Proc. Malac. Soc. Lond., ix, pp. 126-45, 1910.

[^8]: ${ }^{1}$ The types of this species, of Tiriparus Washingtonianus (Pachychilus Drakei), and of Ambloxus Olequansis were obtained by the writer during the summer of 1911 while collecting marine Eocene fossils at Little Falls, Washington, in the interests of Dr. Ralph Arnold.

[^9]: ${ }^{1}$ With one or two others from the 'Mission Scientifique Mexique' omitted from the Zoological Record.

[^10]: ${ }^{1}$ Eupera, a tropical genus, has but a single somewhat bifid cardinal in each valse in species seen by the writer, and the cardinals of the right valve of Comeocyclas, sub-gen. Pisidium, are commonly united abore. On the other hand, the Amesodas show a tendency toward a bifurcation of the cardinals.

[^11]: ${ }^{1}$ Dall, Trans. Wagn. Inst., iii (4), p. 1460, 1903, has shown that Corncocyclas, originally based on an assemblage of Cyrenoider, from which Tellina pusilla, Gmel., was selected as type, in a restricted sense takes priority over the more familiar name of this group, Pisidium of Pfeiffer. Comeocyclas has been generally regarded as a synonym of Spherium, hence there have been objections to the use of the name in this novel connexion. The problem resolves itself into choosing the lesser of two evils. Pisidium camot be retained as the gemus in any event on account of the prior Phymesoda of Rafinesque. Anyone floundering through the maze of spelling and names in the Monographic in an attempt to determine what Rafinesque really intended to designate his genus and the species described under it (to say nothing of identifying the former except for the citation of Cyclas dubia, Say), would welcome Corncocyclas as a straw to a drowning man. Since Dall appears to be the first writer to establish a type for Férussac's group, and the one selected was not excluded from consideration, it does not seem necessary to question why this particular species should have been cited. Already Comeocyclas has found a place in the literature of the American and Australian freshwater Cyrenoids, and, if for no other reason, should not be disregarded without good reason.

[^12]: ${ }^{1}$ Acella is included here merely to give an understanding of the classification. No attempt is made to give a complete list of the exotic genera of the various sub-families.

[^13]: ${ }^{1}$ Professor G. D. Louderback informs the writer that the 'Pliocene' of Cache Valley, Utah, whence this species was described, is, in all probabilities, merely an extension of the Lake Bonneville sediments.
 ${ }^{2}$ L. auricularia is subject to excessive syntonic variation. L. peregra, of Europe, and L. catascopium, of America, were based on comparatively normal individuals. No attempt is made to give a description broad enough to cover the aberrant forms.

[^14]: Juvenile Gundlachia, vide Crosse \& Fischer.

[^15]: ${ }^{1}$ One specimen probably washed down from Upper Klamath Lake above.

[^16]: ${ }^{1}$ The terms ultra-dextral and ultra-sinistral have seen frequent use in the Lymnoids for genera in which the shell is dextral and the animal sinistral, or vice versa. The explanation of Simroth and others is probably the correct one, however, only in the present and one or two analogous cases. It would be very difticult in the Kincaidilla stage of Gundlachia, for instance, to explain this phenomenon in such a manner without the animal living up on top of its shell, a feature the writer has never observed. In the primitive Planorbidæ, while the animal is dextral the shell is obviously sinistral. In the more specialized stages an ultra-sinistral shell is developed, doubtless the nearest approach possible to a dextral shell to conform to the dextral animal, but there is no evidence that the ancestral type was ever dextral. The development of Pompholyx offers similar difficulties.

 In the three patelliform groups of Ancylidæ-Acroloxus, Kincaidilla, and Ancylus, for instance-Acroloxus is sub-sinistral, Fincaidilla sub-dextral, while Ancylus is not distinctly either, yet the animal is sinistral in all cases. It seems, therefore, probable that in this family, groups in the patelliform stages exhibit no constant relation between the position of the apex and the abortion of the soft parts.

 The families of the Lymnoider have doubtless evolved independently

